A new hybrid gadolinium nanoparticles-loaded polymeric material for neutron detection in rare event searches
Journal of Instrumentation IOP Publishing 19:09 (2024) P09021
Abstract:
Experiments aimed at direct searches for WIMP dark matter require highly effective reduction of backgrounds and control of any residual radioactive contamination. In particular, neutrons interacting with atomic nuclei represent an important class of backgrounds due to the expected similarity of a WIMP-nucleon interaction, so that such experiments often feature a dedicated neutron detector surrounding the active target volume. In the context of the development of DarkSide-20k detector at INFN Gran Sasso National Laboratory (LNGS), several R&D projects were conceived and developed for the creation of a new hybrid material rich in both hydrogen and gadolinium nuclei to be employed as an essential element of the neutron detector. Thanks to its very high cross-section for neutron capture, gadolinium is one of the most widely used elements in neutron detectors, while the hydrogen-rich material is instrumental in efficiently moderating the neutrons. In this paper results from one of the R&Ds are presented. In this effort the new hybrid material was obtained as a poly(methyl methacrylate) (PMMA) matrix, loaded with gadolinium oxide in the form of nanoparticles. We describe its realization, including all phases of design, purification, construction, characterization, and determination of mechanical properties of the new material.Constraints on directionality effect of nuclear recoils in a liquid argon time projection chamber
The European Physical Journal C SpringerOpen 84:1 (2024) 24
Abstract:
Ph.DStudy of cosmogenic activation above ground for the DarkSide-20k experiment
Astroparticle Physics Elsevier 152 (2023) 102878
Electron transport measurements in liquid xenon with Xenoscope, a large-scale DARWIN demonstrator
The European Physical Journal C SpringerOpen 83:8 (2023) 717
Abstract:
The DARWIN/XLZD experiment is a next-generation dark matter detector with a multi-ten-ton liquid xenon time projection chamber at its core. Its principal goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until interactions of astrophysical neutrinos will become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the liquid xenon target will be observed by VUV-sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs with masses above $\sim$5\,GeV, such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions, and in particular also to bosonic dark matter candidates with masses at the keV-scale. We present the detector concept, discuss the main sources of backgrounds, the technological challenges and some of the ongoing detector design and R&D efforts, as well as the large-scale demonstrators. We end by discussing the sensitivity to particle dark matter interactions.Comment: 7 pages, 10 figures. Accepted to appear in Nuc. Phys. B special issue "Nobel Symposium on Dark Matter" (NS 182Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel
Physical Review D American Physical Society (APS) 107:11 (2023) 112006