Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Team of laser scientists in front of the GEMINI laser target chamber at the CLF.

The team in the GEMINI laser target area at the Central Laser Facility, Harwell.

Dr Robin Timmis

Post doctoral research assistant

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laser fusion and extreme field physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
robin.timmis@physics.ox.ac.uk
Clarendon Laboratory, room 244
  • About
  • Publications

Computational modelling of the semi-classical quantum vacuum in 3D

Communications Physics Springer Nature 8:1 (2025) 224

Authors:

Zixin Zhang, Ramy Aboushelbaya, Iustin Ouatu, Elliott Denis, Abigail James, Robin Timmis, Marko von der Leyen, Rui Torres, Thomas Grismayer, Luis O Silva

Abstract:

The global commissioning of multi-Petawatt laser systems provides unprecedented access to ultra-high electromagnetic fields for probing the quantum vacuum. However, current analytical models are limited, necessitating large-scale simulations for experimental validation. Here, we present real-time three-dimensional simulations of two quantum vacuum effects, using a semi-classical numerical solver based on the Heisenberg-Euler Lagrangian. The simulation model is benchmarked against vacuum birefringence analytical results with a counter-propagating setup. Simulations results of both plane-wave and Gaussian pulses are consistent with theoretical predictions. The solver is then applied to four-wave mixing using three Gaussian pulses with real-time information on the harmonic evolution. We provide quantitative explanations for the astigmatism in the output and produce precise estimates of the interaction time and size. Results are compared with the plane-wave model and previous numerical results. This solver paves the way for in-depth investigations of a broad spectrum of quantum vacuum effects in any arbitrary laser setup.
More details from the publisher
Details from ORA
More details

Computational modelling of the semi-classical quantum vacuum in 3D

(2024)

Authors:

Zixin Zhang, Ramy Aboushelbaya, Rui Torres, Thomas Grismayer, Iustin Ouatu, Elliott Denis, Abigail James, Robin Timmis, Marko von der Leyen, Peter Norreys, Luis Silva
More details from the publisher
Details from ORA

Gravitational waves from high-power twisted light

Physical Review D American Physical Society 110 (2024) 044023

Authors:

Eduard Atonga, Killian Martineau, Ramy Aboushelbaya, Marko von der Leyen, Sunny Howard, Jordan Lee, Heath Martin, Iustin Ouatu, Robert Paddock, Rusko Ruskov, Robin Timmis, Peter Norreys

Abstract:

Recent advances in high-energy and high-peak-power laser systems have opened up new possibilities for fundamental physics research. In this work, the potential of twisted light for the generation of gravitational waves in the high frequency regime is explored for the first time. Focusing on Bessel beams, novel analytic expressions and numerical computations for the generated metric perturbations and associated powers are presented. The gravitational peak intensity is shown to reach 1.44 × 10−5 W.m−2 close to the source, and 1.01 × 10−19 W.m−2 ten meters away. Compelling evidence is provided that the properties of the generated gravitational waves, such as frequency, polarisation states and direction of emission, are controllable by the laser pulse parameters and optical arrangements.
More details from the publisher
Details from ORA
More details

Attosecond and nano-Coulomb electron bunches via the Zero Vector Potential mechanism

Scientific Reports Springer Nature 14:1 (2024) 10805

Authors:

Robin Timmis, Robert Paddock, Iustin Ouatu, Jordan Lee, Sunny Howard, Eduard Atonga, Rusko Ruskov, Hannah Martin, Robin Wang, Ramy Aboushelbaya, Marko von der Leyen, Edward Gumbrell, Peter Norreys

Abstract:

The commissioning of multi-petawatt class laser facilities around the world is gathering pace. One of the primary motivations for these investments is the acceleration of high-quality, low-emittance electron bunches. Here we explore the interaction of a high-intensity femtosecond laser pulse with a mass-limited dense target to produce MeV attosecond electron bunches in transmission and confirm with three-dimensional simulation that such bunches have low emittance and nano-Coulomb charge. We then perform a large parameter scan from non-relativistic laser intensities to the laser-QED regime and from the critical plasma density to beyond solid density to demonstrate that the electron bunch energies and the laser pulse energy absorption into the plasma can be quantitatively described via the Zero Vector Potential mechanism. These results have wide-ranging implications for future particle accelerator science and associated technologies.
More details from the publisher
Details from ORA
More details
More details

Energy gain of wetted-foam implosions with auxiliary heating for inertial fusion studies

Plasma Physics and Controlled Fusion IOP Publishing 66:2 (2023) 025005

Authors:

Robert W Paddock, Tat S Li, Eugene Kim, Jordan J Lee, Heath Martin, Rusko T Ruskov, Stephen Hughes, Steven J Rose, Christopher D Murphy, Robbie HH Scott, Robert Bingham, Warren Garbett, Vadim V Elisseev, Brian M Haines, Alex B Zlystra, E Mike Campbell, Cliff A Thomas, Tom Goffrey, Tony D Arber, Ramy Aboushelbaya, Marko W Von der Leyen, Robin HW Wang, Abigail A James, Iustin Ouatu, Robin Timmis, Sunny Howard, Eduard Atonga, Peter A Norreys

Abstract:

Low convergence ratio implosions (where wetted-foam layers are used to limit capsule convergence, achieving improved robustness to instability growth) and auxiliary heating (where electron beams are used to provide collisionless heating of a hotspot) are two promising techniques that are being explored for inertial fusion energy applications. In this paper, a new analytic study is presented to understand and predict the performance of these implosions. Firstly, conventional gain models are adapted to produce gain curves for fixed convergence ratios, which are shown to well-describe previously simulated results. Secondly, auxiliary heating is demonstrated to be well understood and interpreted through the burn-up fraction of the deuterium-tritium fuel, with the gradient of burn-up with respect to burn-averaged temperature shown to provide good qualitative predictions of the effectiveness of this technique for a given implosion. Simulations of auxiliary heating for a range of implosions are presented in support of this and demonstrate that this heating can have significant benefit for high gain implosions, being most effective when the burn-averaged temperature is between 5 and 20 keV.
More details from the publisher
Details from ORA

Pagination

  • Current page 1
  • Page 2
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet