Functional characterisation of missense variations in the Kir4.1 potassium channel (KCNJ10) associated with seizure susceptibility.
Brain Res Mol Brain Res 139:1 (2005) 178-183
Abstract:
Recent genetic linkage studies have identified an association between missense variations in the gene encoding the Kir4.1 potassium channel (KCNJ10) and seizure susceptibility phenotypes in both humans and mice. The results of this study demonstrate that these variations (T262S and R271C) do not produce any observable changes in channel function or in predicted channel structure. It is therefore unlikely that the seizure susceptibility phenotypes associated with these missense variations are caused by changes in the intrinsic functional properties of Kir4.1.Long chain CoA esters as competitive antagonists of phosphatidylinositol 4,5-bisphosphate activation in Kir channels.
J Biol Chem 280:35 (2005) 30760-30767
Abstract:
Long chain fatty acid esters of coenzyme A (LC-CoA) are potent activators of ATP-sensitive (K(ATP)) channels, and elevated levels have been implicated in the pathophysiology of type 2 diabetes. This stimulatory effect is thought to involve a mechanism similar to phosphatidylinositol 4,5-bisphosphate (PIP2), which activates all known inwardly rectifying potassium (Kir) channels. However, the effect of LC-CoA on other Kir channels has not been well characterized. In this study, we show that in contrast to their stimulatory effect on K(ATP) channels, LC-CoA (e.g. oleoyl-CoA) potently and reversibly inhibits all other Kir channels tested (Kir1.1, Kir2.1, Kir3.4, Kir7.1). We also demonstrate that the inhibitory potency of the LC-CoA increases with the chain length of the fatty acid chain, while both its activatory and inhibitory effects critically depend on the presence of the 3'-ribose phosphate on the CoA group. Biochemical studies also demonstrate that PIP2 and LC-CoA bind with similar affinity to the C-terminal domains of Kir2.1 and Kir6.2 and that PIP2 binding can be competitively antagonized by LC-CoA, suggesting that the mechanism of LC-CoA inhibition involves displacement of PIP2. Furthermore, we demonstrate that in contrast to its stimulatory effect on K(ATP) channels, phosphatidylinositol 3,4-bisphosphate has an inhibitory effect on Kir1.1 and Kir2.1. These results demonstrate a bi-directional modulation of Kir channel activity by LC-CoA and phosphoinositides and suggest that changes in fatty acid metabolism (e.g. LC-CoA production) could have profound and widespread effects on cellular electrical activity.Modelling of the ATP-inhibitory mechanism in ATP-sensitive potassium (KATP) channels: Insights from computer simulations of wild-type and mutant channels.
BIOPHYS J 88:1 (2005) 284A-284A
Identification of a heteromeric interaction that influences the rectification, gating, and pH sensitivity of Kir4.1/Kir5.1 potassium channels.
J Biol Chem 278:44 (2003) 43533-43540
Abstract:
Heteromultimerization between different potassium channel subunits can generate channels with novel functional properties and thus contributes to the rich functional diversity of this gene family. The inwardly rectifying potassium channel subunit Kir5.1 exhibits highly selective heteromultimerization with Kir4.1 to generate heteromeric Kir4.1/Kir5.1 channels with unique rectification and kinetic properties. These novel channels are also inhibited by intracellular pH within the physiological range and are thought to play a key role in linking K+ and H+ homeostasis by the kidney. However, the mechanisms that control heteromeric K+ channel assembly and the structural elements that generate their unique functional properties are poorly understood. In this study we identify residues at an intersubunit interface between the cytoplasmic domains of Kir5.1 and Kir4.1 that influence the novel rectification and gating properties of heteromeric Kir4.1/Kir5.1 channels and that also contribute to their pH sensitivity. Furthermore, this interaction presents a structural mechanism for the functional coupling of these properties and explains how specific heteromeric interactions can contribute to the novel functional properties observed in heteromeric Kir channels. The highly conserved nature of this structural association between Kir subunits also has implications for understanding the general mechanisms of Kir channel gating and their regulation by intracellular pH.Identification of domains that control the heteromeric assembly of Kir5.1/Kir4.0 potassium channels
American Journal of Physiology - Cell Physiology 284:4 53-4 (2003)