Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Peter Ukkonen PhD

PDRA

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Atmospheric processes
peter.ukkonen@physics.ox.ac.uk
Robert Hooke Building, room F46
Google Scholar page
  • About
  • Publications

Vertically Recurrent Neural Networks for Sub‐Grid Parameterization

Journal of Advances in Modeling Earth Systems Wiley 17:6 (2025) e2024MS004833

Authors:

P Ukkonen, M Chantry

Abstract:

Machine learning has the potential to improve the physical realism and/or computational efficiency of parameterizations. A typical approach has been to feed concatenated vertical profiles to a dense neural network. However, feed‐forward networks lack the connections to propagate information sequentially through the vertical column. Here we examine if predictions can be improved by instead traversing the column with recurrent neural networks (RNNs) such as Long Short‐Term Memory (LSTMs). This method encodes physical priors (locality) and uses parameters more efficiently. Firstly, we test RNN‐based radiation emulators in the Integrated Forecasting System. We achieve near‐perfect offline accuracy, and the forecast skill of a suite of global weather simulations using the emulator are for the most part statistically indistinguishable from reference runs. But can radiation emulators provide both high accuracy and a speed‐up? We find optimized, state‐of‐the‐art radiation code on CPU generally faster than RNN‐based emulators on GPU, although the latter can be more energy efficient. To test the method more broadly, and explore recent challenges in parameterization, we also adapt it to data sets from other studies. RNNs outperform reference feed‐forward networks in emulating gravity waves, and when combined with horizontal convolutions, for non‐local unified parameterization. In emulation of moist physics with memory, the RNNs have similar offline accuracy as ResNets, the previous state‐of‐the‐art. However, the RNNs are more efficient, and more stable in autoregressive semi‐prognostic tests. Multi‐step autoregressive training improves performance in these tests and enables a latent representation of convective memory. Recently proposed linearly recurrent models achieve similar performance to LSTMs.
More details from the publisher
Details from ORA
More details

Emulation of sub-grid physics using stochastic, vertically recurrent neural networks

Copernicus Publications (2025)

Authors:

Peter Ukkonen, Laura Mansfield, Hannah Christensen
More details from the publisher

The Cycle 46 Configuration of the HARMONIE-AROME Forecast Model

Meteorology MDPI 3:4 (2024) 354-390

Authors:

Emily Gleeson, Ekaterina Kurzeneva, Wim de Rooy, Laura Rontu, Daniel Martín Pérez, Colm Clancy, Karl-Ivar Ivarsson, Bjørg Jenny Engdahl, Sander Tijm, Kristian Pagh Nielsen, Metodija Shapkalijevski, Panu Maalampi, Peter Ukkonen, Yurii Batrak, Marvin Kähnert, Tosca Kettler, Sophie Marie Elies van den Brekel, Michael Robin Adriaens, Natalie Theeuwes, Bolli Pálmason, Thomas Rieutord, James Fannon, Eoin Whelan, Samuel Viana

Abstract:

The aim of this technical note is to describe the Cycle 46 reference configuration of the HARMONIE-AROME convection-permitting numerical weather prediction model. HARMONIE-AROME is one of the canonical system configurations that is developed, maintained, and validated in the ACCORD consortium, a collaboration of 26 countries in Europe and northern Africa on short-range mesoscale numerical weather prediction. This technical note describes updates to the physical parametrizations, both upper-air and surface, configuration choices such as lateral boundary conditions, model levels, horizontal resolution, model time step, and databases associated with the model, such as for physiography and aerosols. Much of the physics developments are related to improving the representation of clouds in the model, including developments in the turbulence, shallow convection, and statistical cloud scheme, as well as changes in radiation and cloud microphysics concerning cloud droplet number concentration and longwave cloud liquid optical properties. Near real-time aerosols and the ICE-T microphysics scheme, which improves the representation of supercooled liquid, and a wind farm parametrization have been added as options. Surface-wise, one of the main advances is the implementation of the lake model FLake. An outlook on upcoming developments is also included.
More details from the publisher
Details from ORA

First results and future plans for ecRad radiation in Météo-France models

Copernicus Publications (2024)

Authors:

Sophia Schäfer, Robin Hogan, Quentin Rodier, Quentin Libois, Yann Seity, Romain Roehrig, Peter Ukkonen
More details from the publisher

Representing sub-grid processes in weather and climate models via sequence learning

(2024)

Authors:

Peter Ukkonen, Matthew Chantry
More details from the publisher

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet