Herschel-ATLAS/GAMA: What determines the far-infrared properties of radio galaxies?
Monthly Notices of the Royal Astronomical Society 432:1 (2013) 609-625
Abstract:
We perform a stacking analysis of Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) data in order to obtain isothermal dust temperatures and rest-frame luminosities at 250 μm (L250), for a well-defined sample of 1599 radio sources over the H-ATLAS Phase 1/Galaxy and Mass Assembly (GAMA) area. The radio sample is generated using a combination of NRAO VLA Sky Survey data and K-band United Kingdom Infrared Telescope Deep Sky Survey-Large Area Survey data, over the redshift range 0.01 < z < 0.8. The far-infrared(FIR) properties of the sample are investigated as a function of 1.4-GHz luminosity, redshift, projected radio-source size and radio spectral index. In order to search for stellar mass-dependent relations, we split the parent sample into those sources which are below and above 1.5 L*K.After correcting for stellar mass and redshift, we find no relation between the 250-μm luminosity and the 1.4-GHz radio luminosity of radio active galactic nuclei. This implies thata galaxy's nominal radio luminosity has little or no bearing on the star formation rate (SFR)and/or dust mass content of the host system, although this does not mean that other variables(e.g. radio source size) related to the jets do not have an effect. The L250 of both the radio detected and non-radio-detected galaxies (defined as those sources not detected at 1.4 GHz but detected in the Sloan Digital Sky Survey with r< 22) rises with increasing redshift. Compact radio sources (<30 kpc) are associated with higher 250 μm luminosities and dust temperatures than their more extended (>30 kpc) counterparts. The higher dust temperature suggests that this may be attributed to enhanced SFRs in compact radio galaxies, but whether this is directly or indirectly due to radio activity (e.g. jet-induced or merger-driven star formation) is as yet unknown.For matched samples in LK and g-r, sub-1.5 L*K and super-1.5 L*K radio-detected galaxies have 0.89±0.18 and 0.49±0.12 times the 250μm luminosity of their non-radio-detected counterparts. Thus, while no difference in L250 is observed in sub-1.5 L*K radio-detected galaxies, a strong deficit is observed in super-1.5 L*K radio-detected galaxies. We explain these results in terms of the hotter, denser and richer halo environments massive radio galaxies maintain and are embedded in. These environments are expected to quench the cold gas and dust supply needed for further star formation and therefore dust production. Our results indicate that all massive radio galaxies (>1.5 L*K) may have systematically lower FIR luminosities(~25 per cent) than their colour-matched non-radio-detected counterparts. Finally, no relation between radio spectral index and L250 is found for the subset of 1.4-GHz radio sources with detections at 330 MHz. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.High resolution in three dimensions with SWIFT and PALM3K
3rd AO4ELT Conference - Adaptive Optics for Extremely Large Telescopes (2013)
Abstract:
SWIFT is a visible light (650-1000nm) integral field spectorgaph fed by the Palomar extreme adaptive optics system PALM3K. With a subaperture spacing of 8cm, PALM3K is capable of delivering diffraction limited performance even in the visible. With SWIFT providing spatially resolved spectroscopy at R=4000, this provides a truly unique facility for high resolution science in three dimensions. We present here some results from the first year of PALM3K+SWIFT science. We also report on our experience of operating a small field of view instrument (1"x0.5") with a high performance AO system, and hope the lessons learned will provide valuable input to designing successful and productive AO plus Instrument combinations for ELTs.Spectroscopic FIR mapping of the disk and galactic wind of M 82 with Herschel-PACS
ASTRONOMY & ASTROPHYSICS 549 (2013) ARTN A118
Measurements of CO redshifts with Z-spec for lensed submillimeter galaxies discovered in the H-atlas survey
Astrophysical Journal 757:2 (2012)
Abstract:
We present new observations from Z-Spec, a broadband 185-305GHz spectrometer, of five submillimeter bright lensed sources selected from the Herschel-Astrophysical Terahertz Large Area Survey science demonstration phase catalog. We construct a redshift-finding algorithm using combinations of the signal to noise of all the lines falling in the Z-Spec bandpass to determine redshifts with high confidence, even in cases where the signal to noise in individual lines is low. We measure the dust continuum in all sources and secure CO redshifts for four out of five (z 1.5-3). In one source, SDP.17, we tentatively identify two independent redshifts and a water line, confirmed at z = 2.308. Our sources have properties characteristic of dusty starburst galaxies, with magnification-corrected star formation rates of 102-3 M ⊙ yr-1. Lower limits for the dust masses (∼a few 108 M ⊙) and spatial extents (1kpc equivalent radius) are derived from the continuum spectral energy distributions, corresponding to dust temperatures between 54 and 69K. In the local thermodynamic equilibrium (LTE) approximation, we derive relatively low CO excitation temperatures (≲ 100 K) and optical depths (τ ≲ 1). Performing a non-LTE excitation analysis using RADEX, we find that the CO lines measured by Z-Spec (from J = 4 → 3 to 10 → 9, depending on the galaxy) localize the best solutions to either a high-temperature/low-density region or a low/temperature/high-density region near the LTE solution, with the optical depth varying accordingly. Observations of additional CO lines, CO(1-0) in particular, are needed to constrain the non-LTE models. © 2012. The American Astronomical Society. All rights reserved.A detailed gravitational lens model based on Submillimeter Array and Keck adaptive optics imaging of a Herschel-atlas submillimeter galaxy at z = 4.243
Astrophysical Journal 756:2 (2012)