Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Aprajita Verma

Senior Research Fellow

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Zooniverse
  • Astronomical instrumentation
  • Galaxy formation and evolution
  • Rubin-LSST
  • Extremely Large Telescope
aprajita.verma@physics.ox.ac.uk
Telephone: 01865 (2)73374
Denys Wilkinson Building, room 760
  • About
  • Outreach
  • Teaching
  • Publications

Green Bank Telescope Zpectrometer CO(1-0) observations of the strongly lensed submillimeter galaxies From the Herschel ATLAS

Astrophysical Journal 726:2 PART II (2011)

Authors:

DT Frayer, AI Harris, AJ Baker, RJ Ivison, I Smail, M Negrello, R Maddalena, I Aretxaga, M Baes, M Birkinshaw, DG Bonfield, D Burgarella, S Buttiglione, A Cava, DL Clements, A Cooray, H Dannerbauer, A Dariush, G De Zotti, JS Dunlop, L Dunne, S Dye, S Eales, J Fritz, J Gonzalez-Nuevo, D Herranz, R Hopwood, DH Hughes, E Ibar, MJ Jarvis, G Lagache, LL Leeuw, M Lopez-Caniego, S Maddox, MJ Michałlowski, A Omont, M Pohlen, E Rigby, G Rodighiero, D Scott, S Serjeant, DJB Smith, AM Swinbank, P Temi, MA Thompson, I Valtchanov, PP Van Der Werf, A Verma
More details from the publisher
More details
Details from ArXiV

STAR FORMATION AND THE ISM IN INFRARED BRIGHT GALAXIES - SHINING

CONDITIONS AND IMPACT OF STAR FORMATION: NEW RESULTS WITH HERSCHEL AND BEYOND 52 (2011) 55-+

Authors:

E Sturm, A Poglitsch, A Contursi, J Gracia-Carpio, J Fischer, E Gonzalez-Alfonso, R Genzel, S Hailey-Dunsheath, D Lutz, L Tacconi, J deJong, A Sternberg, A Verma, S Madden, L Vigroux, D Cormier, U Klaas, M Nielbock, O Krause, J Schreiber, M Haas
More details from the publisher

Spitzer imaging of Herschel-atlas gravitationally lensed submillimeter sources

Astrophysical Journal 728:1 PART II (2011)

Authors:

R Hopwood, J Wardlow, A Cooray, AA Khostovan, S Kim, M Negrello, E Da Cunha, D Burgarella, I Aretxaga, R Auld, M Baes, E Barton, F Bertoldi, DG Bonfield, R Blundell, S Buttiglione, A Cava, DL Clements, J Cooke, H Dannerbauer, A Dariush, G De Zotti, J Dunlop, L Dunne, S Dye, S Eales, J Fritz, D Frayer, MA Gurwell, DH Hughes, E Ibar, RJ Ivison, MJ Jarvis, G Lagache, L Leeuw, S Maddox, MJ Michałlowski, A Omont, E Pascale, M Pohlen, E Rigby, G Rodighiero, D Scott, S Serjeant, I Smail, DJB Smith, P Temi, MA Thompson, I Valtchanov, P Van Der Werf, A Verma, JD Vieira
More details from the publisher
More details
Details from ArXiV

Expected performance and simulated observations of the instrument HARMONI at the European Extremely Large Telescope (E-ELT)

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

S Arribas, NA Thatte, M Tecza, T Goodsall, F Clarke, RL Davies, R Bacon, L Colina, D Lunney, E Mediavilla, A Remillieux, D Rigopoulou, M Swinbank, A Verma

Abstract:

HARMONI has been conceived as a workhorse visible and near-infrared (0.47-2.45 microns) integral field spectrograph for the European Extremely Large Telescope (E-ELT). It provides both seeing and diffraction limited observations at several spectral resolutions (R= 4000, 10000, 20000). HARMONI can operate with almost any flavor of AO (e.g. GLAO, LTAO, SCAO), and it is equipped with four spaxel scales (4, 10, 20 and 40 mas) thanks to which it can be optimally configured for a wide variety of science programs, from ultra-sensitive observations of point sources to highangular resolution spatially resolved studies of extended objects. In this paper we describe the expected performance of the instrument as well as its scientific potential. We show some simulated observations for a selected science program, and compare HARMONI with other ground and space based facilities, like VLT, ALMA, and JWST, commenting on their synergies and complementarities. © 2010 Copyright SPIE - The International Society for Optical Engineering.
More details from the publisher

HARMONI: A single-field wide-band integral-field spectrograph for the European ELT

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

N Thatte, M Tecza, F Clarke, RL Davies, A Remillieux, R Bacon, D Lunney, S Arribas, E Mediavilla, F Gago, N Bezawada, P Ferruit, A Fragoso, D Freeman, J Fuentes, T Fusco, A Gallie, A Garcia, T Goodsall, F Gracia, A Jarno, J Kosmalski, J Lynn, S McLay, D Montgomery, A Pecontal, H Schnetler, H Smith, D Sosa, G Battaglia, N Bowles, L Colina, E Emsellem, A Garcia-Perez, S Gladysz, I Hook, P Irwin, M Jarvis, R Kennicutt, A Levan, A Longmore, J Magorrian, M McCaughrean, L Origlia, R Rebolo, D Rigopoulou, S Ryan, M Swinbank, N Tanvir, E Tolstoy, A Verma

Abstract:

We describe the results of a Phase A study for a single field, wide band, near-infrared integral field spectrograph for the European Extremely Large Telescope (E-ELT). HARMONI, the High Angular Resolution Monolithic Optical & Nearinfrared Integral field spectrograph, provides the E-ELT's core spectroscopic requirement. It is a work-horse instrument, with four different spatial scales, ranging from seeing to diffraction-limited, and spectral resolving powers of 4000, 10000 & 20000 covering the 0.47 to 2.45 μm wavelength range. It is optimally suited to carry out a wide range of observing programs, focusing on detailed, spatially resolved studies of extended objects to unravel their morphology, kinematics and chemical composition, whilst also enabling ultra-sensitive observations of point sources. We present a synopsis of the key science cases motivating the instrument, the top level specifications, a description of the opto-mechanical concept, operation and calibration plan, and image quality and throughput budgets. Issues of expected performance, complementarity and synergies, as well as simulated observations are presented elsewhere in these proceedings[1]. © 2010 Copyright SPIE - The International Society for Optical Engineering.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet