Detailed theoretical modelling of the kinetic Sunyaev-Zel'dovich stacking power spectrum
Journal of Cosmology and Astroparticle Physics (2025)
Abstract:
We examine, from first principles, the angular power spectrum between the kinematic Sunyaev-Zel'dovich effect (kSZ) and the reconstructed galaxy momentum -- the basis of existing and future "kSZ stacking" analyses. We present a comprehensive evaluation of all terms contributing to this cross-correlation, including both the transverse and longitudinal modes of the density-weighted velocity field, as well as all irreducible correlators that contribute to the momentum power spectrum. This includes the dominant component, involving the convolution of the electron-galaxy and velocity-velocity power spectra, an additional disconnected cross-term, and a connected non-Gaussian trispectrum term. Using this framework, we examine the impact of other commonly neglected contributions, such as the two-halo component of the dominant term, and the impact of satellite galaxies. Finally, we assess the sensitivity of upcoming CMB experiments to these effects and determine that they will be sensitive to the cross-term, the connected non-Gaussian trispectrum term, the two-halo contribution and impact of satellite galaxies, at a significance level of ~4-6 σ. On the other hand, the contribution from longitudinal modes is negligible in all cases. These results identify the astrophysical observables that must be accurately modelled to obtain unbiased constraints on cosmology and astrophysics from near-future kSZ measurements.
Calibrating baryonic effects in cosmic shear with external data in the LSST era
Monthly Notices of the Royal Astronomical Society (2025)
Abstract:
Cosmological constraints derived from weak lensing (WL) surveys are limited by baryonic effects, which suppress the non-linear matter power spectrum on small scales. By combining WL measurements with data from external tracers of the gas around massive structures, it is possible to calibrate baryonic effects and, therefore, obtain more precise cosmological constraints. In this study, we generate mock data for a Stage-IV weak lensing survey such as the Legacy Survey of Space and Time (LSST), X-ray gas fractions, and stacked kinetic Sunyaev-Zel'dovich (kSZ) measurements, to jointly constrain cosmological and astrophysical parameters describing baryonic effects (using the Baryon Correction Model - BCM). First, using WL data alone, we quantify the level to which the BCM parameters will need to be constrained to recover the cosmological constraints obtained under the assumption of perfect knowledge of baryonic feedback. We identify the most relevant baryonic parameters and determine that they must be calibrated to a precision of ∼10-20% to avoid significant degradation of the fiducial WL constraints. We forecast that long-term X-ray data from ∼5000 clusters should be able to reach this threshold for the parameters that characterise the abundance of hot virialised gas. Constraining the distribution of ejected gas presents a greater challenge, however, but we forecast that long-term kSZ data from a CMB-S4-like experiment should achieve the level of precision required for full self-calibration.