Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Tim Woollings

Professor of Physical Climate Science

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
Tim.Woollings@physics.ox.ac.uk
Telephone: 01865 (2)82427
Atmospheric Physics Clarendon Laboratory, room 203
  • About
  • Publications

Entropy sources in a dynamical core atmosphere model

Quarterly Journal of the Royal Meteorological Society Wiley 132:614 (2006) 43-59

Authors:

Tim Woollings, John Thuburn
More details from the publisher

Vertical discretizations for compressible Euler equation atmospheric models giving optimal representation of normal modes

Journal of Computational Physics 203:2 (2005) 386-404

Authors:

J Thuburn, TJ Woollings

Abstract:

Accurate representation of different kinds of wave motion is essential for numerical models of the atmosphere, but is sensitive to details of the discretization. In this paper, numerical dispersion relations are computed for different vertical discretizations of the compressible Euler equations and compared with the analytical dispersion relation. A height coordinate, an isentropic coordinate, and a terrain-following mass-based coordinate are considered, and, for each of these, different choices of prognostic variables and grid staggerings are considered. The discretizations are categorized according to whether their dispersion relations are optimal, are near optimal, have a single zero-frequency computational mode, or are problematic in other ways. Some general understanding of the factors that affect the numerical dispersion properties is obtained: heuristic arguments concerning the normal mode structures, and the amount of averaging and coarse differencing in the finite difference scheme, are shown to be useful guides to which configurations will be optimal; the number of degrees of freedom in the discretization is shown to be an accurate guide to the existence of computational modes; there is only minor sensitivity to whether the equations for thermodynamic variables are discretized in advective form or flux form; and an accurate representation of acoustic modes is found to be a prerequisite for accurate representation of inertia-gravity modes, which, in turn, is found to be a prerequisite for accurate representation of Rossby modes. © 2004 Elsevier Inc. All rights reserved.
More details from the publisher
More details

Advancing Organized Convection Representation in the Unified Model: Implementing and Enhancing Multiscale Coherent Structure Parameterization

Journal of Advances in Modelling Earth Systems

Authors:

Hannah Christensen, Zhixiao Zhang, Mark Muetzelfeldt, Tim Woollings, Robert Plant, Alison Stirling, Michael Whitall, Mitch Moncrieff, Chih-Chih Chen, Zhe Feng
More details from the publisher

Predictable Decadal Forcing of the North Atlantic Jet Stream by Sub-Polar North Atlantic Sea Surface Temperatures

Authors:

Kristian Strommen, Tim Woollings, Paolo Davini, Paolo Ruggieri, Isla R Simpson
More details from the publisher

Sensitivity of European blocking to physical parameters in a large ensemble climate model experiment

Atmospheric Science Letters Wiley Open Access
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • Current page 35
  • Page 36
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet