Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Xinyu Shen

PDRA

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
xinyu.shen@physics.ox.ac.uk
Robert Hooke Building
  • About
  • Publications

Thermal management enables stable perovskite nanocrystal light-emitting diodes with novel hole transport material

Small Wiley 19:45 (2023) 2303472

Authors:

Xinyu Shen, Seon Lee Kwak, Woo Hyeon Jeong, Ji Won Jang, Zhongkai Yu, Hyungju Ahn, Hea Jung Park, Hyosung Choi, Sung Heum Park, Henry J Snaith, Do-Hoon Hwang, Bo Ram Lee

Abstract:

The severely insufficient operational lifetime of perovskite light-emitting diodes (LEDs) is incompatible with the rapidly increasing external quantum efficiency, even as it approaches the theoretical limit, thereby significantly impeding the commercialization of perovskite LEDs. In addition, Joule heating induces ion migration and surface defects, degrades the photoluminescence quantum yield and other optoelectronic properties of perovskite films, and induces the crystallization of charge transport layers with low glass transition temperatures, resulting in LED degradation under continuous operation. Here, a novel thermally crosslinked hole transport material, poly(FCA<sub>60</sub> -co-BFCA<sub>20</sub> -co-VFCA<sub>20</sub> ) (poly-FBV), with temperature-dependent hole mobility is designed, which is advantageous for balancing the charge injection of the LEDs and limiting the generation of Joule heating. The optimised CsPbI<sub>3</sub> perovskite nanocrystal LEDs with poly-FBV realise approximately a 2-fold external quantum efficiency increase over the LED with commercial hole transport layer poly(4-butyl-phenyl-diphenyl-amine) (poly-TPD), owing to the balanced carrier injection and suppressed exciton quenching. Moreover, because of the Joule heating control provided by the novel crosslinked hole transport material, the LED utilising crosslinked poly-FBV has a 150-fold longer operating lifetime (490 min) than that utilizing poly-TPD (3.3 min). The study opens a new avenue for the use of PNC LEDs in commercial semiconductor optoelectronic devices.
More details from the publisher
Details from ORA
More details
More details

Passivation strategies for mitigating defect challenges in halide perovskite light-emitting diodes

Joule Elsevier 7:2 (2023) 272-308

Authors:

Xinyu Shen, Keehoon Kang, Zhongkai Yu, Woo Hyeon Jeong, Hyosung Choi, Sung Heum Park, Samuel D Stranks, Henry J Snaith, Richard H Friend, Bo Ram Lee
More details from the publisher

Phosphine oxide modulator-ameliorated hole injection for blue perovskite light-emitting diodes

JOURNAL OF MATERIALS CHEMISTRY A 11:38 (2023) 20808-20815

Authors:

Xiangyang Fan, Yu Wang, Xinyu Shen, Zhongkai Yu, Woo Hyeon Jeong, Ji Won Jang, Yeong Gyeong Kim, Seung-Je Woo, Hyungju Ahn, Hyosung Choi, Tae-Woo Lee, Sung Heum Park, Feng Gao, Bo Ram Lee
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet