Zn-Alloyed CsPbI3 Nanocrystals for Highly Efficient Perovskite Light-Emitting Devices.
Nano letters 19:3 (2019) 1552-1559
Abstract:
We alloyed Zn2+ into CsPbI3 perovskite nanocrystals by partial substitution of Pb2+ with Zn2+, which does not change their crystalline phase. The resulting alloyed CsPb0.64Zn0.36I3 nanocrystals exhibited an improved, close-to-unity photoluminescence quantum yield of 98.5% due to the increased radiative decay rate and the decreased non-radiative decay rate. They also showed an enhanced stability, which correlated with improved effective Goldschmidt tolerance factors, by the incorporation of Zn2+ ions with a smaller radius than the Pb2+ ions. Simultaneously, the nanocrystals switched from n-type (for CsPbI3) to nearly ambipolar for the alloyed nanoparticles. The hole injection barrier of electroluminescent LEDs was effectively eliminated by using alloyed CsPb0.64Zn0.36I3 nanocrystals, and a high peak external quantum efficiency of 15.1% has been achieved.Stimuli-Responsive Inks Based on Perovskite Quantum Dots for Advanced Full-Color Information Encryption and Decryption.
ACS applied materials & interfaces 11:8 (2019) 8210-8216
Abstract:
For data security applications, the use of fluorescent inks has become the most promising approach because of their convenience and low cost. However, traditional fluorescent inks are usually visible either under ambient light or UV light, whereas the improved stimuli-responsive inks are restricted to a single color. For the first time, full-color stimuli-responsive inks for information coding, encryption, and decryption are reported, which rely on the facile preparation and conversion of perovskite quantum dots. The information printed by the halide salt solution is invisible under ambient and UV light but becomes readable under UV light after spraying a unique developer. Besides, the primitive information can be stored for many years, even decades. Even after the decryption process, it still can be stored for at least several weeks. Most importantly, using butyl amine and acetic acid as encryption and decryption reagents, respectively, can switch off/on the luminescence. In this way, the printed information can be encrypted and decrypted, which shows great potential for information security applications.Cesium Lead Chloride/Bromide Perovskite Quantum Dots with Strong Blue Emission Realized via a Nitrate-Induced Selective Surface Defect Elimination Process.
The journal of physical chemistry letters 10:1 (2019) 90-96
Abstract:
Cesium lead halide perovskites emitting blue light in the 460-470 nm range of wavelengths have so far been plagued with rather poor luminescent performance, placing inevitable limitations on the development of perovskite nanocrystal-based blue light-emitting devices. Herein, a selective surface defect elimination process with the help of hydrated nitrates was introduced into the perovskite/toluene solution to strip the undesired surface defects and vacancies and to boost the photoluminescence quantum yield of true-blue-light-emitting (at 466 nm) CsPb(Cl/Br)3 perovskite nanocrystals to the impressive value of 85%. Unlike the conventional passivation strategy, the anionic nitrate ions are able to desorb the undesired surface metallic lead and combine with excess surface metal ions, leaving perovskite quantum dots with better crystallinity and fewer surface defects.Simultaneous Strontium Doping and Chlorine Surface Passivation Improve Luminescence Intensity and Stability of CsPbI3 Nanocrystals Enabling Efficient Light-Emitting Devices.
Advanced materials (Deerfield Beach, Fla.) 30:50 (2018) e1804691
Abstract:
A method is proposed to improve the photo/electroluminescence efficiency and stability of CsPbI3 perovskite nanocrystals (NCs) by using SrCl2 as a co-precursor. The SrCl2 is chosen as the dopant to synthesize the CsPbI3 NCs. Because the ion radius of Sr2+ (1.18 Å) is slightly smaller than that of Pb2+ (1.19 Å) ions, divalent Sr2+ cations can partly replace the Pb2+ ions in the lattice structure of perovskite NCs and cause a slight lattice contraction. At the same time, Cl- anions from SrCl2 are able to efficiently passivate surface defect states of CsPbI3 nanocrystals, thus converting nonradiative trap states to radiative states. The simultaneous Sr2+ ion doping and surface Cl- ion passivation result in the enhanced photoluminescence quantum yield (up to 84%), elongated emission lifetime, and improved stability. Sr2+ -doped CsPbI3 NCs are employed to produce light-emitting devices with a high external quantum yield of 13.5%.PbS Capped CsPbI3 Nanocrystals for Efficient and Stable Light-Emitting Devices Using p-i-n Structures.
ACS central science 4:10 (2018) 1352-1359