Harnessing Solar Energy for Ammonia Synthesis from Nitrogen and Seawater Using Oxynitride Semiconductors
Advanced Energy Materials Wiley (2025) 2406160
Abstract:
Green ammonia evolution by photocatalytic means has gained significant attention over recent decades, however, the energy conversion efficiency remains unsatisfactory, and deep mechanistic insights are absent. Here in this work, this challenge is addressed by developing a photothermal system that synthesizes ammonia from nitrogen and natural seawater under simulated solar irradiation, employing ruthenium‐doped barium tantalum oxynitride semiconductors. This method significantly enhances solar‐to‐ammonia conversion efficiency, providing a viable alternative to the energy‐intensive Haber–Bosch process. Optimized at 240 °C, the system achieves an ammonia evolution rate of 5869 µmol g−1 h−1 in natural seawater. Moreover, detailed characterizations have shown that the use of seawater not only leverages an abundant natural resource but also improves the reaction kinetics and overall system stability. The catalysts maintain their activity and structural integrity over multiple cycles, demonstrating both the feasibility and the durability of this innovative system. Achieving a solar‐to‐ammonia efficiency of 13% and an overall energy conversion efficiency of 6.3%, this breakthrough highlights the potential to decentralize ammonia production, enhancing accessibility and sustainability. This approach combines the benefits of thermal and photocatalytic processes, marking a significant advancement in ammonia synthesis technology.System Design Considerations for Magneto‐Electrocatalysis of the Oxygen Evolution Reaction
Small Wiley (2025) 2500001
Abstract:
The integration of an external magnetic field into electrocatalysis, termed magneto‐electrocatalysis, can target efficiency challenges in the oxygen evolution reaction (OER). Reaction rates can be enhanced through improved mass transport of reactants and products, manipulation of spin states, and lowered resistance. The OER is a kinetic bottleneck in electrocatalytic water splitting for sustainable hydrogen fuel. Previous studies lack comprehensive analyses and consistent reporting of magnetic field effects, resulting in varied interpretations. To establish optimized and reliable systems at larger scales, significant research advancements are required. This perspective explores the complex impact of magnetic fields on OER, emphasizing the interplay between various mechanisms such as spin‐polarization of oxygen intermediates, Lorentz force‐induced magnetohydrodynamics, and magnetoresistance. Here, how experimental design – such as electrode magnetism, shape, positioning, and reactor setup – can significantly influence these mechanisms is highlighted. Through a comprehensive review of current studies, major knowledge gaps and propose methodologies are identified to improve experimental reproducibility and comparability. This article aims to guide researchers toward the development of more efficient, scalable systems that leverage magnetic fields to enhance water splitting to push forward commercial green hydrogen production.Stabilization of Ni-containing Keggin-type polyoxometalates with variable oxidation states as novel catalysts for electrochemical water oxidation †
Chemical Science Royal Society of Chemistry (2024)
Abstract:
The development of new recyclable and inexpensive electrochemically active species for water oxidation catalysis is the most crucial step for future utilization of renewables. Particularly, transition metal complexes containing internal multiple, cooperative metal centers to couple with redox catalysts in the inorganic Keggin-type polyoxometalate (POM) framework at high potential or under extreme pH conditions would be promising candidates. However, most reported Ni-containing POMs have been highly unstable towards hydrolytic decomposition, which precludes them from application as water oxidation catalysts (WOCs). Here, we have prepared new tri-Ni-containing POMs with variable oxidation states by charge tailored synthetic strategies for the first time and developed them as recyclable POMs for water oxidation catalysts. In addition, by implanting corresponding POM anions into the positively charged MIL-101(Cr) metal–organic framework (MOF), the entrapped Ni2+/Ni3+ species can show complete recyclability for water oxidation catalysis without encountering uncontrolled hydrolysis of the POM framework. As a result, a low onset potential of approximately 1.46 V vs. NHE for water oxidation with stable WOC performance is recorded. Based on this study, rational design and stabilization of other POM-electrocatalysts containing different multiple transition metal centres could be made possible.Electrolyte-assisted polarization leading to enhanced charge separation and solar-to-hydrogen conversion efficiency of seawater splitting
Nature Catalysis Springer Nature 7:1 (2024) 77-88
Abstract:
Photocatalytic splitting of seawater for hydrogen evolution has attracted a great deal of attention in recent years. However, the poor energy conversion efficiency and stability of photocatalysts in a salty environment have greatly hindered further applications of this technology. Moreover, the effects of electrolytes in seawater remain controversial. Here we present electrolyte-assisted charge polarization over an N-doped TiO2 photocatalyst, which demonstrates the stoichiometric evolution of H2 and O2 from the thermo-assisted photocatalytic splitting of seawater. Our extensive characterizations and computational studies show that ionic species in seawater can selectively adsorb on photo-polarized facets of the opposite charge, which can prolong the charge-carrier lifetime by a factor of five, leading to an overall energy conversion efficiency of 15.9 ± 0.4% at 270 °C. Using a light-concentrated furnace, a steady hydrogen evolution rate of 40 mmol g−1 h−1 is demonstrated, which is of the same order of magnitude as laboratory-scale electrolysers.Molecular layer-by-layer re-stacking of MoS2–In2Se3 by electrostatic means: assembly of a new layered photocatalyst
Materials Chemistry Frontiers Royal Society of Chemistry 7:5 (2023) 937-945