System Design Considerations for Magneto‐Electrocatalysis of the Oxygen Evolution Reaction
Abstract:
The integration of an external magnetic field into electrocatalysis, termed magneto‐electrocatalysis, can target efficiency challenges in the oxygen evolution reaction (OER). Reaction rates can be enhanced through improved mass transport of reactants and products, manipulation of spin states, and lowered resistance. The OER is a kinetic bottleneck in electrocatalytic water splitting for sustainable hydrogen fuel. Previous studies lack comprehensive analyses and consistent reporting of magnetic field effects, resulting in varied interpretations. To establish optimized and reliable systems at larger scales, significant research advancements are required. This perspective explores the complex impact of magnetic fields on OER, emphasizing the interplay between various mechanisms such as spin‐polarization of oxygen intermediates, Lorentz force‐induced magnetohydrodynamics, and magnetoresistance. Here, how experimental design – such as electrode magnetism, shape, positioning, and reactor setup – can significantly influence these mechanisms is highlighted. Through a comprehensive review of current studies, major knowledge gaps and propose methodologies are identified to improve experimental reproducibility and comparability. This article aims to guide researchers toward the development of more efficient, scalable systems that leverage magnetic fields to enhance water splitting to push forward commercial green hydrogen production.Electrolyte-assisted polarization leading to enhanced charge separation and solar-to-hydrogen conversion efficiency of seawater splitting
Abstract:
Photocatalytic splitting of seawater for hydrogen evolution has attracted a great deal of attention in recent years. However, the poor energy conversion efficiency and stability of photocatalysts in a salty environment have greatly hindered further applications of this technology. Moreover, the effects of electrolytes in seawater remain controversial. Here we present electrolyte-assisted charge polarization over an N-doped TiO2 photocatalyst, which demonstrates the stoichiometric evolution of H2 and O2 from the thermo-assisted photocatalytic splitting of seawater. Our extensive characterizations and computational studies show that ionic species in seawater can selectively adsorb on photo-polarized facets of the opposite charge, which can prolong the charge-carrier lifetime by a factor of five, leading to an overall energy conversion efficiency of 15.9 ± 0.4% at 270 °C. Using a light-concentrated furnace, a steady hydrogen evolution rate of 40 mmol g−1 h−1 is demonstrated, which is of the same order of magnitude as laboratory-scale electrolysers.Molecular layer-by-layer re-stacking of MoS2–In2Se3 by electrostatic means: assembly of a new layered photocatalyst
Abstract:
2D-layered transition metal chalcogenides are useful semiconductors for a wide range of opto-electronic applications. Their similarity as layered structures offers exciting possibility to modify their electronic properties by creating new heterojunction assemblies from layer-by-layer restacking of individual monolayer sheets, however, the lack of specific interaction between these layers could induce phase segregation. Here, we employed a chemical method using n-BuLi to exfoliate MoS2 and In2Se3 into their monolayer-containing colloids in solution. The bulky Se atoms can be selectively leached from In2Se3 during Li treatment which gives positively charged surface monolayers in neutral pH whereas the strong polarization of Mo–S with moderate S leaching gives a negatively charged surface. Specific interlayer electrostatic attraction during their selective assembly gives a controllable atomic AB-type of layer stacking as supported by EXAFS, STEM with super-EDX mapping, TAS/TRPL and DFT calculations. Using this simple but inexpensive bottom-up solution method, a new photocatalyst assembled from layers for photo water splitting can be tailor-made with high activity.Responses of defect-rich Zr-based metal–organic frameworks toward NH3 adsorption
Abstract:
Understanding structural responses of metal–organic frameworks (MOFs) to external stimuli such as the inclusion of guest molecules and temperature/pressure has gained increasing attention in many applications, for example, manipulation and manifesto smart materials for gas storage, energy storage, controlled drug delivery, tunable mechanical properties, and molecular sensing, to name but a few. Herein, neutron and synchrotron diffractions along with Rietveld refinement and density functional theory calculations have been used to elucidate the responsive adsorption behaviors of defect-rich Zr-based MOFs upon the progressive incorporation of ammonia (NH3) and variable temperature. UiO-67 and UiO-bpydc containing biphenyl dicarboxylate and bipyridine dicarboxylate linkers, respectively, were selected, and the results establish the paramount influence of the functional linkers on their NH3 affinity, which leads to stimulus-tailoring properties such as gate-controlled porosity by dynamic linker flipping, disorder, and structural rigidity. Despite their structural similarities, we show for the first time the dramatic alteration of NH3 adsorption profiles when the phenyl groups are replaced by the bipyridine in the organic linker. These molecular controls stem from controlling the degree of H-bonding networks/distortions between the bipyridine scaffold and the adsorbed NH3 without significant change in pore volume and unit cell parameters. Temperature-dependent neutron diffraction also reveals the NH3-induced rotational motions of the organic linkers. We also demonstrate that the degree of structural flexibility of the functional linkers can critically be affected by the type and quantity of the small guest molecules. This strikes a delicate control in material properties at the molecular level.Unusual catalytic properties of high-energetic-facet polar metal oxides
Abstract:
Conspectus
Heterogeneous catalysis is an area of great importance not only in chemical industries but also in energy conversion and environmental technologies. It is well-established that the specific surface morphology and structure of solid catalysts exert remarkable effects on catalytic performances, since most physical and chemical processes take place on the surface during catalytic reactions. Different from the widely studied faceted metallic nanoparticles, metal oxides give more complicated structures and surface features. Great progress has been achieved in controlling the shape and exposed facets of transition metal oxides during nanocrystal growth, usually by using surface-directing agents (SDAs). However, the effects of exposed facets remain controversial among researchers. It should be noted that high-energetic facets, especially polar facets, tend to lower their surface energy via different relaxation processes, such as surface reconstruction, redox change, adsorption of countercharged species, etc. These processes can subsequently lead to surface defect formation and break the surface stoichiometry, and the resulting changes in electronic configurations and charge migration properties all play important roles in heterogeneous catalysis. Because different materials prefer different relaxation methods, various surface features are created, and different techniques are required to investigate the different features from facet to facet. Conventional characterization techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, etc. appear to be insufficient to elucidate the underlying principles of the facet effects. Consequently, an increasing number of novel techniques have been developed to differentiate the surface features, enabling greater understanding of the effects of facets on heterogeneous catalysis.
In this Account, on the basis of previous studies by our own group, we will focus on the effects of tailored facets on heterogeneous catalysis introduced by engineered simple binary metal oxide nanomaterials primarily with exposed polar facets, in combination with detailed surface studies using a range of new characterization techniques. As a result, fundamental principles of the effects of facets are elucidated, and the structure–activity correlations are demonstrated. The surface features introduced by different relaxation processes are also investigated using a range of characterization techniques. For example, electron paramagnetic resonance spectroscopy is used to detect the oxygen vacancies, while probe-assisted solid-state NMR spectroscopy is shown to be facet-sensitive and able to evaluate the surface acidity. It is also shown that such different features influence the heterogeneous catalytic performances in different ways. With the help of first-principles density functional theory calculations, unique properties of the faceted metal oxides are discussed and unraveled. Besides, other materials such as transition metal chalcogenides and layered double hydroxides are also briefly discussed with regard to their application in facet-dependent catalysis studies.