Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Ming Zhu

Graduate Student

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Advanced Functional Materials and Devices (AFMD) Group
ming.zhu@physics.ox.ac.uk
Robert Hooke Building, room G29
  • About
  • Demonstrating
  • Prizes, awards and recognition
  • Publications

Vacuum deposited organic solar cells with BTIC-H as A–D–A non-fullerene acceptor

APL Mater. 11, 061128 (2023)

Authors:

Irfan Habib, Pascal Kaienburg, Dondong Xia, Olivia Gough, Ming Zhu, Joseph Spruce, Weiwei Li, Moritz Riede

Abstract:

The record power conversion efficiency of solution-processed organic solar cells (OSCs) has almost doubled since non-fullerene acceptors (NFAs) replaced fullerene derivatives as the best-performing acceptor molecules. The successful transition from C60 to NFAs is still pending for vacuum-thermal evaporated (VTE) OSCs, not least because most NFAs are too large to be evaporated without breaking. Due to VTE’s relevance in terms of industrial manufacturing, discovering high-performing VTE NFAs is a major opportunity for OSCs. Here, we fabricate evaporated OSCs based on the NFA BTIC-H known from solution processing. This A–D–A molecule has an unfused bithiophene core, 1,1-dicyanomethylene-3-indanone end groups, and hexyl side chains, making it small enough to be evaporated well. We pair BTIC-H with four commonly used evaporated donors—DCV5T-Me(3,3), DTDCPB, HB194, and SubNc—in planar heterojunctions. We observe appreciable photocurrents and a voltage loss of ∼0.8 V, matching that of corresponding C60 devices. Donor:BTIC-H bulk heterojunctions likely face charge collection issues due to unfavorable microstructure. Our work demonstrates one of few NFA based evaporated OSCs with encouraging performance results and gives one potential starting point for molecule design of further NFAs suitable for VTE.
More details from the publisher

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet