Constraint on the Matter-Antimatter Symmetry-Violating Phase in Neutrino Oscillations

ArXiv 1910.03887 (2019)

Authors:

K Abe, R Akutsu, A Ali, C Alt, C Andreopoulos, L Anthony, M Antonova, S Aoki, A Ariga, Y Asada, Y Ashida, ET Atkin, Y Awataguchi, S Ban, M Barbi, GJ Barker, G Barr, C Barry, M Batkiewicz-Kwasniak, A Beloshapkin, F Bench, V Berardi, S Berkman, L Berns, S Bhadra, S Bienstock, A Blondel, S Bolognesi, B Bourguille, SB Boyd, D Brailsford, A Bravar, D Bravo Berguño, C Bronner, A Bubak, M Buizza Avanzini, J Calcutt, T Campbell, S Cao, SL Cartwright, MG Catanesi, A Cervera, A Chappell, C Checchia, D Cherdack, N Chikuma, G Christodoulou, J Coleman, G Collazuol, L Cook, D Coplowe, A Cudd, A Dabrowska, G De Rosa, T Dealtry, PF Denner, SR Dennis, C Densham, F Di Lodovico, N Dokania, S Dolan, O Drapier, J Dumarchez, P Dunne, L Eklund, S Emery-Schrenk, A Ereditato, P Fernandez, T Feusels, AJ Finch, GA Fiorentini, G Fiorillo, C Francois, M Friend, Y Fujii, R Fujita, D Fukuda, R Fukuda, Y Fukuda, K Gameil, C Giganti, T Golan, M Gonin, A Gorin, M Guigue, DR Hadley, JT Haigh, P Hamacher-Baumann, M Hartz, T Hasegawa, NC Hastings, T Hayashino, Y Hayato, A Hiramoto, M Hogan, J Holeczek, NT Hong Van, F Iacob, AK Ichikawa, M Ikeda, T Ishida, T Ishii, M Ishitsuka, K Iwamoto, A Izmaylov, B Jamieson, SJ Jenkins, C Jesús-Valls, M Jiang, S Johnson, P Jonsson, CK Jung, M Kabirnezhad, AC Kaboth, T Kajita, H Kakuno, J Kameda, D Karlen, SP Kasetti, Y Kataoka, T Katori, Y Kato, E Kearns, M Khabibullin, A Khotjantsev, T Kikawa, H Kim, J Kim, S King, J Kisiel, A Knight, A Knox, T Kobayashi, L Koch, T Koga, A Konaka, LL Kormos, Y Koshio, K Kowalik, H Kubo, Y Kudenko, N Kukita, S Kuribayashi, R Kurjata, T Kutter, M Kuze, L Labarga, J Lagoda, M Lamoureux, M Laveder, M Lawe, M Licciardi, T Lindner, RP Litchfield, SL Liu, X Li, A Longhin, L Ludovici, X Lu, T Lux, LN Machado, L Magaletti, K Mahn, M Malek, S Manly, L Maret, AD Marino, JF Martin, T Maruyama, T Matsubara, K Matsushita, V Matveev, K Mavrokoridis, E Mazzucato, M McCarthy, N McCauley, KS McFarland, C McGrew, A Mefodiev, C Metelko, M Mezzetto, A Minamino, O Mineev, S Mine, M Miura, L Molina Bueno, S Moriyama, J Morrison, Th A Mueller, L Munteanu, S Murphy, Y Nagai, T Nakadaira, M Nakahata, Y Nakajima, A Nakamura, KG Nakamura, K Nakamura, S Nakayama, T Nakaya, K Nakayoshi, C Nantais, TV Ngoc, K Niewczas, K Nishikawa, Y Nishimura, TS Nonnenmacher, F Nova, P Novella, J Nowak, JC Nugent, HM O'Keeffe, L O'Sullivan, T Odagawa, K Okumura, T Okusawa, SM Oser, RA Owen, Y Oyama, V Palladino, JL Palomino, V Paolone, WC Parker, P Paudyal, M Pavin, D Payne, GC Penn, L Pickering, C Pidcott, G Pintaudi, ES Pinzon Guerra, C Pistillo, B Popov, K Porwit, M Posiadala-Zezula, A Pritchard, B Quilain, T Radermacher, E Radicioni, B Radics, PN Ratoff, E Reinherz-Aronis, C Riccio, E Rondio, S Roth, A Rubbia, AC Ruggeri, A Rychter, K Sakashita, F Sánchez, CM Schloesser, K Scholberg, J Schwehr, M Scott, Y Seiya, T Sekiguchi, H Sekiya, D Sgalaberna, R Shah, A Shaikhiev, F Shaker, A Shaykina, M Shiozawa, W Shorrock, A Shvartsman, A Smirnov, M Smy, JT Sobczyk, H Sobel, FJP Soler, Y Sonoda, J Steinmann, S Suvorov, A Suzuki, SY Suzuki, Y Suzuki, AA Sztuc, M Tada, M Tajima, A Takeda, Y Takeuchi, HK Tanaka, HA Tanaka, S Tanaka, LF Thompson, W Toki, C Touramanis, KM Tsui, T Tsukamoto, M Tzanov, Y Uchida, W Uno, M Vagins, S Valder, Z Vallari, D Vargas, G Vasseur, C Vilela, WGS Vinning, T Vladisavljevic, VV Volkov, T Wachala, J Walker, JG Walsh, Y Wang, D Wark, MO Wascko, A Weber, R Wendell, MJ Wilking, C Wilkinson, JR Wilson, RJ Wilson, K Wood, C Wret, Y Yamada, K Yamamoto, C Yanagisawa, G Yang, T Yano, K Yasutome, S Yen, N Yershov, M Yokoyama, T Yoshida, M Yu, A Zalewska, J Zalipska, K Zaremba, G Zarnecki, M Ziembicki, ED Zimmerman, M Zito, S Zsoldos, A Zykova

Abstract:

The current laws of physics do not explain the observed imbalance of matter and antimatter in the universe. Sakharov proposed that an explanation would require the violation of CP symmetry between matter and antimatter. The only CP violation observed so far is in the weak interactions of quarks, and it is too small to explain the matter-antimatter imbalance of the universe. It has been shown that CP violation in the lepton sector could generate the matter-antimatter disparity through the process called leptogenesis. The quantum mixing of neutrinos, the neutral leptons in the Standard Model, provides a potential source of CP violation through a complex phase dCP, which may have consequences for theoretical models of leptogenesis. This CP violation can be measured in muon neutrino to electron neutrino oscillations and the corresponding antineutrino oscillations, which are experimentally accessible with accelerator-produced beams as established by the T2K experiment. Until now, the value of dCP has not been significantly constrained by neutrino oscillation experiments. Here the T2K collaboration reports a measurement that favors large enhancement of the neutrino oscillation probability, excluding values of dCP which result in a large enhancement of the observed anti-neutrino oscillation probability at three standard deviations (3 sigma). The 3 sigma confidence level interval for dCP, which is cyclic and repeats every 2pi, is [-3.41,-0.03] for the so-called normal mass ordering, and [-2.54,-0.32] for the inverted mass ordering. Our results show an indication of CP violation in the lepton sector. Herein we establish methods for sensitive searches for matter-antimatter asymmetry in neutrino oscillations using accelerator-produced neutrino beams. Future measurements with larger data samples will determine whether the leptonic CP violation is larger than the quark sector CP violation.

Search for an anomalous excess of charged-current νe interactions without pions in the final state with the MicroBooNE experiment

Physical Review D: Particles, Fields, Gravitation and Cosmology American Physical Society 105 (2022) 112004

Authors:

Kirsty Duffy, giles Barr

Abstract:

This article presents a measurement of νe interactions without pions in the final state using the MicroBooNE experiment and an investigation into the excess of low-energy electromagnetic events observed by the MiniBooNE collaboration. The measurement is performed in exclusive channels with (1eNp0π) and without (1e0p0π) visible final-state protons using 6.86×1020 protons on target of data collected from the Booster Neutrino Beam at Fermilab. Events are reconstructed with the Pandora pattern recognition toolkit and selected using additional topological information from the MicroBooNE liquid argon time projection chamber. Using a goodness-of-fit test the data are found to be consistent with the predicted number of events with nominal flux and interaction models with a p-value of 0.098 in the two channels combined. A model based on the low-energy excess observed in MiniBooNE is introduced to quantify the strength of a possible νe excess. The analysis suggests that, if an excess is present, it is not consistent with a scaling of the νe contribution to the flux as predicted by the signal model used in the analysis. Combined, the 1eNp0π and 1e0p0π channels do not give a conclusive indication about the tested model, but separately they both disfavor the lowenergy excess model at >90% CL. The observation in the most sensitive 1eNp0π channel is below the prediction and consistent with no excess. In the less sensitive 1e0p0π channel the observation at low energy is above the prediction, while overall there is agreement over the full energy spectrum.

High-precision measurement of the W boson mass with the CDF II detector

Science American Association for the Advancement of Science 376:6589 (2022) 170-176

Authors:

T Aaltonen, S Amerio, D Amidei, A Anastassov, A Annovi, G Apollinari, Ja Appel, T Arisawa, A Artikov, W Ashmanskas, B Auerbach, A Boveia, Hs Budd, K Burkett, G Busetto, P Butti, A Buzatu, A Calamba, S Camarda, C Hays

Abstract:

The mass of the W boson, a mediator of the weak force between elementary particles, is tightly constrained by the symmetries of the standard model of particle physics. The Higgs boson was the last missing component of the model. After observation of the Higgs boson, a measurement of the W boson mass provides a stringent test of the model. We measure the W boson mass, MW, using data corresponding to 8.8 inverse femtobarns of integrated luminosity collected in proton-antiproton collisions at a 1.96 tera-electron volt center-of-mass energy with the CDF II detector at the Fermilab Tevatron collider. A sample of approximately 4 million W boson candidates is used to obtain [Formula: see text], the precision of which exceeds that of all previous measurements combined (stat, statistical uncertainty; syst, systematic uncertainty; MeV, mega-electron volts; c, speed of light in a vacuum). This measurement is in significant tension with the standard model expectation.

New CC 0π GENIE model tune for MicroBooNE

Physical Review D American Physical Society 105:7 (2022) 072001

Authors:

P Abratenko, An, Anthony, Giles Barr, Kirsty Duffy

Abstract:

Obtaining a high-quality interaction model with associated uncertainties is essential for neutrino experiments studying oscillations, nuclear scattering processes, or both. As a primary input to the MicroBooNE experiment’s next generation of neutrino cross section measurements and its flagship investigation of the MiniBooNE low-energy excess, we present a new tune of the charged-current pionless (CC0π) interaction cross section via the two major contributing processes—charged-current quasielastic and multinucleon interaction models—within version 3.0.6 of the GENIE neutrino event generator. Parameters in these models are tuned to muon neutrino CC0π cross section data obtained by the T2K experiment, which provides an independent set of neutrino interactions with a neutrino flux in a similar energy range to MicroBooNE’s neutrino beam. Although the fit is to muon neutrino data, the information carries over to electron neutrino simulation because the same underlying models are used in GENIE. A number of novel fit parameters were developed for this work, and the optimal parameters were chosen from existing and new sets. We choose to fit four parameters that have not previously been constrained by theory or data. Thus, this will be called a theory-driven tune. The result is an improved match to the T2K CC0π data with more well-motivated uncertainties based on the fit.

First measurement of inclusive electron-neutrino and antineutrino charged current differential cross sections in charged lepton energy on argon in MicroBooNE

Physical Review D: Particles, Fields, Gravitation and Cosmology American Physical Society 105 (2022) L051102

Authors:

giles Barr, Kirsty Duffy, Wouter Van de pontseele

Abstract:

We present the first measurement of the single-differential νe + ¯νe charged-current inclusive cross sections on argon in electron or positron energy and in electron or positron scattering angle over the full range. Data were collected using the MicroBooNE liquid argon time projection chamber located off-axis from the Fermilab Neutrinos at the Main Injector beam over an exposure of 2.0 × 1020 protons on target. The signal definition includes a 60 MeV threshold on the νe or ¯νe energy and a 120 MeV threshold on the electron or positron energy. The measured total and differential cross sections are found to be in agreement with the GENIE, NuWro, and GiBUU neutrino generators.