Herschel-pacs observations of far-ir co line emission in NGC 1068: Highly excited molecular gas in the circumnuclear disk
Astrophysical Journal 755:1 (2012)
Abstract:
We report the detection of far-IR CO rotational emission from the prototypical Seyfert 2 galaxy NGC 1068. Using Herschel-PACS, we have detected 11 transitions in the J upper = 14-30 (E upper/kB = 580-2565K) range, all of which are consistent with arising from within the central 10″ (700pc). The detected transitions are modeled as arising from two different components: a moderate-excitation (ME) component close to the galaxy systemic velocity and a high-excitation (HE) component that is blueshifted by 80kms-1. We employ a large velocity gradient model and derive n H2 105.6cm-3, T kin 170K, and M H2 106.7 M ⊙ for the ME component and n H2 106.4cm-3, T kin 570K, and M H2 105.6 M ⊙ for the HE component, although for both components the uncertainties in the density and mass are ±(0.6-0.9)dex. Both components arise from denser and possibly warmer gas than traced by low-J CO transitions, and the ME component likely makes a significant contribution to the mass budget in the nuclear region. We compare the CO line profiles with those of other molecular tracers observed at higher spatial and spectral resolution and find that the ME transitions are consistent with these lines arising in the200pc diameter ring of material traced by H 2 1-0 S(1) observations. The blueshift of the HE lines may also be consistent with the bluest regions of this H2 ring, but a better kinematic match is found with a clump of infalling gas 40pc north of the active galactic nucleus (AGN). We consider potential heating mechanisms and conclude that X-ray- or shock heating of both components is viable, while far-UV heating is unlikely. We discuss the prospects of placing the HE component near the AGN and conclude that while the moderate thermal pressure precludes an association with the 1pc radius H2O maser disk, the HE component could potentially be located only a few parsecs more distant from the AGN and might then provide the N H 1025cm-2 column obscuring the nuclear hard X-rays. Finally, we also report sensitive upper limits extending up to J upper = 50, which place constraints on a previous model prediction for the CO emission from the X-ray obscuring torus. © 2012 The American Astronomical Society. All rights reserved.Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
ArXiv 1208.1967 (2012)
Measurement of WZ production in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector
ArXiv 1208.139 (2012)
Search for a supersymmetric partner to the top quark in final states with jets and missing transverse momentum at sqrt(s) = 7 TeV with the ATLAS detector
ArXiv 1208.1447 (2012)
Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb^-1 of sqrt(s) = 7 TeV proton-proton collision data
ArXiv 1208.0949 (2012)