Assessing Robustness and Bias in 1D Retrievals of 3D Global Circulation Models at High Spectral Resolution: A WASP-76 b Simulation Case Study in Emission
The Astrophysical Journal American Astronomical Society 990:2 (2025) 106
Abstract:
High-resolution spectroscopy (HRS) of exoplanet atmospheres has successfully detected many chemical species and is quickly moving toward detailed characterization of the chemical abundances and dynamics. HRS is highly sensitive to the line shape and position; thus, it can detect three-dimensional (3D) effects such as winds, rotation, and spatial variation of atmospheric conditions. At the same time, retrieval frameworks are increasingly deployed to constrain chemical abundances, pressure–temperature (P–T) structures, orbital parameters, and rotational broadening. To explore the multidimensional parameter space, we need computationally fast models, which are consequently mostly one-dimensional (1D). However, this approach risks introducing interpretation bias since the planet’s true nature is 3D. We investigate the robustness of this methodology at high spectral resolution by running 1D retrievals on simulated observations in emission within an observational framework using 3D global circulation models of the quintessential HJ WASP-76 b. We find that the retrieval broadly recovers conditions present in the atmosphere, but that the retrieved P–T and chemical profiles are not a homogeneous average of all spatial and phase-dependent information. Instead, they are most sensitive to spatial regions with large thermal gradients, which do not necessarily coincide with the strongest emitting regions. Our results further suggest that the choice of parameterization for the P–T and chemical profiles, as well as Doppler offsets among opacity sources, impact the retrieval results. These factors should be carefully considered in future retrieval analyses.Simulating Intermediate Black Hole Mass Measurements for a Sample of Galaxies with Nuclear Star Clusters Using ELT/HARMONI High Spatial Resolution Integral-field Stellar Kinematics
Astronomical Journal American Astronomical Society 170:2 (2025) 124
Abstract:
Understanding the demographics of intermediate-mass black holes (IMBHs, MBH ≈ 102–105 M⊙) in low-mass galaxies is key to constraining black hole seed formation models, but detecting them is challenging due to their small gravitational sphere of influence (SOI). The upcoming Extremely Large Telescope (ELT) High Angular Resolution Monolithic Optical and Near-infrared Integral Field Spectrograph (HARMONI) instrument, with its high angular resolution, offers a promising solution. We present simulations assessing HARMONI’s ability to measure IMBH masses in nuclear star clusters (NSCs) of nearby dwarf galaxies. We selected a sample of 44 candidates within 10 Mpc. For two representative targets, NGC 300 and NGC 3115 dw01, we generated mock HARMONI integral-field data cubes using realistic inputs derived from Hubble Space Telescope imaging, stellar population models, and Jeans anisotropic models (JAM), assuming IMBH masses up to 1% of the NSC mass. We simulated observations across six near-infrared gratings at 10 mas resolution. Analyzing the mock data with standard kinematic extraction and JAM models in a Bayesian framework, we demonstrate that HARMONI can resolve the IMBH SOI and accurately recover masses down to ≈0.5% of the NSC mass within feasible exposure times. These results highlight HARMONI’s potential to revolutionize IMBH studies.Assessing robustness and bias in 1D retrievals of 3D Global Circulation Models at high spectral resolution: a WASP-76 b simulation case study in emission
(2025)
JWST reveals cosmic ray dominated chemistry in the local ULIRG IRAS 07251−0248
Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 542:1 (2025) L117-L125
Abstract:
We analyse the ro-vibrational absorption bands of various molecular cations (HCO, HCNH, and NH) and neutral species (HCN, HNC, and HCN) detected in the James Webb Space Telescope/Mid-Infrared Instrument Medium Resolution Spectrometer spectrum (4.9–27.9 μm) of the local ultraluminous infrared galaxy IRAS 07251-0248. We find that the molecular absorptions are blueshifted by 160 km s relative to the systemic velocity of the target. Using local thermal equilibrium excitation models, we derive rotational temperatures () from 42 to 185 K for these absorption bands. This range of measured can be explained by infrared radiative pumping as a by-product of the strength, effective critical density, and opacity of each molecular band. Thus, these results suggest that these absorptions originate in a warm expanding gas shell (90–330 yr), which might be the base of the larger scale cold molecular outflow detected in this source. Finally, the elevated abundance of molecular cations can be explained by a high cosmic ray ionization rate, with log(/n in the range of -18.2 (from H) to -19.1 (inferred from HCO and NH, which are likely tracing denser gas), consistent with a cosmic ray dominated chemistry as predicted by chemical models.On beam characterization of ground-based CMB radio telescopes using UAV-mounted sources: application to the QUIJOTE TFGI and plans for LSPE-Strip
Journal of Instrumentation IOP Publishing 20:06 (2025) P06057