A search for ttbar resonances with the ATLAS detector in 2.05 fb^-1 of proton-proton collisions at sqrt(s) = 7 TeV

ArXiv 1205.5371 (2012)

Fast and slow rotators in the densest environments: a FLAMES/GIRAFFE IFS study of galaxies in Abell 1689 at z=0.183

ArXiv 1205.5545 (2012)

Authors:

F D'Eugenio, RCW Houghton, RL Davies, E Dalla Bontà

Abstract:

We present FLAMES/GIRAFFE integral field spectroscopy of 30 galaxies in the massive cluster Abell 1689 at z = 0.183. Conducting an analysis similar to that of ATLAS3D, we extend the baseline of the kinematic morphology-density relation by an order of magnitude in projected density and show that it is possible to use existing instruments to identify slow and fast rotators beyond the local Universe. We find 4.5 +- 1.0 slow rotators with a distribution in magnitude similar to those in the Virgo cluster. The overall slow rotator fraction of our Abell 1689 sample is 0.15 +- 0.03, the same as in Virgo using our selection criteria. This suggests that the fraction of slow rotators in a cluster is not strongly dependent on its density. However, within Abell 1689, we find that the fraction of slow rotators increases towards the centre, as was also found in the Virgo cluster.

An Oxford SWIFT Integral Field Spectroscopy study of 14 early-type galaxies in the Coma cluster

ArXiv 1205.4299 (2012)

Authors:

Nicholas Scott, Ryan CW Houghton, Roger L Davies, Michele Cappellari, Niranjan Thatte, Fraser J Clarke, Matthias Tecza

Abstract:

As a demonstration of the capabilities of the new Oxford SWIFT integral field spectrograph, we present first observations for a set of 14 early-type galaxies in the core of the Coma cluster. Our data consist of I- and z-band spatially resolved spectroscopy obtained with the Oxford SWIFT spectrograph, combined with r-band photometry from the SDSS archive for 14 early- type galaxies. We derive spatially resolved kinematics for all objects from observations of the calcium triplet absorption features at \sim 8500 {AA} . Using this kinematic information we classify galaxies as either Fast Rotators or Slow Rotators. We compare the fraction of fast and slow rotators in our sample, representing the densest environment in the nearby Universe, to results from the ATLAS3D survey, finding the slow rotator fraction is \sim 50 per cent larger in the core of the Coma cluster than in the Virgo cluster or field, a 1.2 {\sigma} increase given our selection criteria. Comparing our sample to the Virgo cluster core only (which is 24 times less dense than the Coma core) we find no evidence of an increase in the slow rotator fraction. Combining measurements of the effective velocity dispersion {\sigma_e} with the photometric data we determine the Fundamental Plane for our sample of galaxies. We find the use of the average velocity dispersion within 1 effective radius, {\sigma_e}, reduces the residuals by 13 per cent with respect to comparable studies using central velocity dispersions, consistent with other recent integral field Fundamental Plane determinations.

Measurement of the t-channel single top-quark production cross section in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

ArXiv 1205.313 (2012)

Measurement of W gamma and Z gamma production cross sections in pp collisions at sqrt(s) = 7 TeV and limits on anomalous triple gauge couplings with the ATLAS detector

ArXiv 1205.2531 (2012)