Adaptive optics systems for HARMONI: A visible and near-infrared integral field spectrograph for the E-ELT
Proceedings of SPIE - The International Society for Optical Engineering 7736:PART 1 (2010)
Abstract:
HARMONI is a visible and near-infrared integral field spectrograph for the E-ELT. It needs to work at diffraction limited scales. This will be possible thanks to two adaptive optics systems, complementary to each other. Both systems will make use of the telescope's adaptive M4 and M5 mirrors. The first one is a simple but efficient Single Conjugate AO system (good performance, low sky coverage), fully integrated in HARMONI itself. The second one is a Laser Tomographic AO system (medium performance, very good sky coverage). We present the overall design of the SCAO system and discuss the complementary between SCAO and LTAO for HARMONI. © 2010 SPIE.Herschel -ATLAS: Extragalactic number counts from 250 to 500 microns
Astronomy and Astrophysics 518:4 (2010)
Abstract:
Aims. The Herschel-ATLAS survey (H-ATLAS) will be the largest area survey to be undertaken by the Herschel Space Observatory. It will cover 550 sq. deg. of extragalactic sky at wavelengths of 100, 160, 250, 350 and 500 μm when completed, reaching flux limits (5σ) from 32 to 145 mJy. We here present galaxy number counts obtained for SPIRE observations of the first ∼14 sq. deg. observed at 250, 350 and 500 μm. Methods. Number counts are a fundamental tool in constraining models of galaxy evolution. We use source catalogs extracted from the H-ATLAS maps as the basis for such an analysis. Correction factors for completeness and flux boosting are derived by applying our extraction method to model catalogs and then applied to the raw observational counts. Results. We find a steep rise in the number counts at flux levels of 100-200 mJy in all three SPIRE bands, consistent with results from BLAST. The counts are compared to a range of galaxy evolution models. None of the current models is an ideal fit to the data but all ascribe the steep rise to a population of luminous, rapidly evolving dusty galaxies at moderate to high redshift. © 2010 ESO.Herschel -ATLAS: The dust energy balance in the edge-on spiral galaxy UGC 4754
Astronomy and Astrophysics 518:8 (2010)
Abstract:
We use Herschel PACS and SPIRE observations of the edge-on spiral galaxy UGC 4754, taken as part of the H-ATLAS SDP observations, to investigate the dust energy balance in this galaxy. We build detailed SKIRT radiative models based on SDSS and UKIDSS maps and use these models to predict the far-infrared emission. We find that our radiative transfer model underestimates the observed FIR emission by a factor of two to three. Similar discrepancies have been found for other edge-on spiral galaxies based on IRAS, ISO, and SCUBA data. Thanks to the good sampling of the SED at FIR wavelengths, we can rule out an underestimation of the FIR emissivity as the cause for this discrepancy. Instead we support highly obscured star formation that contributes little to the optical extinction as a more probable explanation. © 2010 ESO.System study of EPICS, the exoplanets imager for the E-ELT
Proceedings of SPIE - The International Society for Optical Engineering 7736:PART 1 (2010)
Abstract:
ESO and a large European consortium completed the phase-A study of EPICS, an instrument dedicated to exoplanets direct imaging for the EELT. The very ambitious science goals of EPICS, the imaging of reflected light of mature gas giant exoplanets around bright stars, sets extremely strong requirements in terms of instrumental contrast achievable. The segmented nature of an ELT appears as a very large source of quasi-static high order speckles that can impair the detection of faint sources with small brightness contrast with respect to their parent star. The paper shows how the overall system has been designed in order to maximize the efficiency of quasi-static speckles rejection by calibration and post-processing using the spectral and polarization dependency of light waves. The trade-offs that led to the choice of the concepts for common path and diffraction suppression system is presented. The performance of the instrument is predicted using simulations of the extreme Adaptive Optics system and polychromatic wave-front propagation through the various optical elements. © 2010 SPIE.The gemini NICI planet-finding campaign
Proceedings of SPIE - The International Society for Optical Engineering 7736:PART 1 (2010)