Measurement of the production cross section for Z/gamma* in association with jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

ArXiv 1111.269 (2011)

Oxford SWIFT integral field spectrograph and multiwavelength observations of the Eagle galaxy at z= 0.77

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 417:4 (2011) 2882-2890

Authors:

Susan A Kassin, L Fogarty, T Goodsall, FJ Clarke, RWC Houghton, G Salter, N Thatte, M Tecza, Roger L Davies, Benjamin J Weiner, CNA Willmer, Samir Salim, Michael C Cooper, Jeffrey A Newman, Kevin Bundy, CJ Conselice, AM Koekemoer, Lihwai Lin, Leonidas A Moustakas, Tao Wang

First season quiet observations: Measurements of cosmic microwave background polarization power spectra at 43 GHz in the multipole range 25 ≤ ℓ ≤ 475

Astrophysical Journal 741:2 (2011)

Authors:

C Bischoff, A Brizius, I Buder, Y Chinone, K Cleary, RN Dumoulin, A Kusaka, R Monsalve, SK Næss, LB Newburgh, R Reeves, KM Smith, IK Wehus, JA Zuntz, JTL Zwart, L Bronfman, R Bustos, SE Church, C Dickinson, HK Eriksen, PG Ferreira, T Gaier, JO Gundersen, M Hasegawa, M Hazumi, KM Huffenberger, ME Jones, P Kangaslahti, DJ Kapner, CR Lawrence, M Limon, J May, JJ McMahon, AD Miller, H Nguyen, GW Nixon, TJ Pearson, L Piccirillo, SJE Radford, ACS Readhead, JL Richards, D Samtleben, M Seiffert, MC Shepherd, ST Staggs, O Tajima, KL Thompson, K Vanderlinde, R Williamson, B Winstein

Abstract:

The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43GHz and 94GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to measure the anisotropy in the polarization of the cosmic microwave background (CMB). QUIET primarily targets the B modes from primordial gravitational waves. The combination of these frequencies gives sensitivity to foreground contributions from diffuse Galactic synchrotron radiation. Between 2008 October and 2010 December, over 10,000hr of data were collected, first with the 19 element 43 GHz array (3458hr) and then with the 90 element 94 GHz array. Each array observes the same four fields, selected for low foregrounds, together covering ≈1000 deg2. This paper reports initial results from the 43 GHz receiver, which has an array sensitivity to CMB fluctuations of 69μK√s. The data were extensively studied with a large suite of null tests before the power spectra, determined with two independent pipelines, were examined. Analysis choices, including data selection, were modified until the null tests passed. Cross-correlating maps with different telescope pointings is used to eliminate a bias. This paper reports the EE, BB, and EB power spectra in the multipole range ℓ = 25-475. With the exception of the lowest multipole bin for one of the fields, where a polarized foreground, consistent with Galactic synchrotron radiation, is detected with 3σ significance, the E-mode spectrum is consistent with the ΛCDM model, confirming the only previous detection of the first acoustic peak. The B-mode spectrum is consistent with zero, leading to a measurement of the tensor-to-scalar ratio of r = 0.35+1.06-0.87. The combination of a new time-stream "double-demodulation" technique, side-fed Dragonian optics, natural sky rotation, and frequent boresight rotation leads to the lowest level of systematic contamination in the B-mode power so far reported, below the level of r = 0.1. © 2011. The American Astronomical Society. All rights reserved.

Kshort and Lambda production in pp interactions at sqrt(s) = 0.9 and 7 TeV measured with the ATLAS detector at the LHC

ArXiv 1111.1297 (2011)

Oxford SWIFT IFS and multi-wavelength observations of the Eagle galaxy at z=0.77

Monthly Notices of the Royal Astronomical Society Blackwell Publishing Inc. (2011)

Authors:

SA Kassin, L Fogarty, T Goodsall, FJ Clarke, RWC Houghton, G Salter, N Thatte, M Tecza, RL Davies, BJ Weiner, CNA Willmer, S Salim, MC Cooper, JA Newman, K Bundy, CJ Conselice, AM Koekemoer, L Lin, LA Moustakas, T Wang

Abstract:

The `Eagle' galaxy at a redshift of 0.77 is studied with the Oxford Short Wavelength Integral Field Spectrograph (SWIFT) and multi-wavelength data from the All-wavelength Extended Groth strip International Survey (AEGIS). It was chosen from AEGIS because of the bright and extended emission in its slit spectrum. Three dimensional kinematic maps of the Eagle reveal a gradient in velocity dispersion which spans 35-75 +/- 10 km/s and a rotation velocity of 25 +/- 5 km/s uncorrected for inclination. Hubble Space Telescope images suggest it is close to face-on. In comparison with galaxies from AEGIS at similar redshifts, the Eagle is extremely bright and blue in the rest-frame optical, highly star-forming, dominated by unobscured star-formation, and has a low metallicity for its size. This is consistent with its selection. The Eagle is likely undergoing a major merger and is caught in the early stage of a star-burst when it has not yet experienced metal enrichment or formed the mass of dust typically found in star-forming galaxies.