Modeling of the HERMES submillimeter source lensed by a dark matter dominated foreground group of galaxies

Astrophysical Journal 738:2 (2011)

Authors:

R Gavazzi, A Cooray, A Conley, JE Aguirre, A Amblard, R Auld, A Beelen, A Blain, R Blundell, J Bock, CM Bradford, C Bridge, D Brisbin, D Burgarella, P Chanial, E Chapin, N Christopher, DL Clements, P Cox, SG Djorgovski, CD Dowell, S Eales, L Earle, TP Ellsworth-Bowers, D Farrah, A Franceschini, H Fu, J Glenn, EA González Solares, M Griffin, MA Gurwell, M Halpern, E Ibar, RJ Ivison, M Jarvis, J Kamenetzky, S Kim, M Krips, L Levenson, R Lupu, A Mahabal, PD Maloney, C Maraston, L Marchetti, G Marsden, H Matsuhara, AMJ Mortier, E Murphy, BJ Naylor, R Neri, HT Nguyen, SJ Oliver, A Omont, MJ Page, A Papageorgiou, CP Pearson, I Pérez-Fournon, M Pohlen, N Rangwala, JI Rawlings, G Raymond, D Riechers, G Rodighiero, IG Roseboom, M Rowan-Robinson, B Schulz, D Scott, KS Scott, P Serra, N Seymour, DL Shupe, AJ Smith, M Symeonidis, KE Tugwell, M Vaccari, E Valiante, I Valtchanov, A Verma, JD Vieira, L Vigroux, L Wang, J Wardlow, D Wiebe, G Wright, CK Xu, G Zeimann, M Zemcov, J Zmuidzinas

Abstract:

We present the results of a gravitational lensing analysis of the bright z s = 2.957 submillimeter galaxy (SMG) HERMES found in the Herschel/SPIRE science demonstration phase data from the Herschel Multi-tiered Extragalactic Survey (HerMES) project. The high-resolution imaging available in optical and near-IR channels, along with CO emission obtained with the Plateau de Bure Interferometer, allows us to precisely estimate the intrinsic source extension and hence estimate the total lensing magnification to be μ = 10.9 ± 0.7. We measure the half-light radius R eff of the source in the rest-frame near-UV and V bands that characterize the unobscured light coming from stars and find R eff, * = [2.0 ± 0.1] kpc, in good agreement with recent studies on the SMG population. This lens model is also used to estimate the size of the gas distribution (Reff, gas = [1.1 ± 0.5] kpc) by mapping back in the source plane the CO (J = 5 → 4) transition line emission. The lens modeling yields a relatively large Einstein radius R Ein = 4.″10 ± 0″.02, corresponding to a deflector velocity dispersion of [483 ± 16] km s -1. This shows that HERMES is lensed by a galaxy group-size dark matter halo at redshift z l ∼ 0.6. The projected dark matter contribution largely dominates the mass budget within the Einstein radius with f dm(< R Ein) ∼ 80%. This fraction reduces to f dm(< R eff, G1 ≃ 4.5 kpc) ∼ 47% within the effective radius of the main deflecting galaxy of stellar mass M *, G1 = [8.5 ± 1.6] × 1011 M ⊙. At this smaller scale the dark matter fraction is consistent with results already found for massive lensing ellipticals at z ∼ 0.2 from the Sloan Lens ACS Survey. © 2011. The American Astronomical Society. All rights reserved.

Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

ArXiv 1109.2242 (2011)

Measurement of the cross section for the production of a W boson in association with b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

ArXiv 1109.147 (2011)

Measurement of the cross-section for b-jets produced in association with a Z boson at sqrt(s)=7 TeV with the ATLAS detector

ArXiv 1109.1403 (2011)

Measurement of the inelastic proton-proton cross-section at root s=7 TeV with the ATLAS detector

Nature Communications Springer Nature 2 (2011) 463

Authors:

K Cranmer, F Crescioli, PVM Da Silvaa, C Da Via, W Davey, T Davidek, N Davidson, R Davidson, R De Asmundis, S De Castro, PEDCF Salgado, J De Graat, U De Sanctis, A De Santo, JBDV De Regie, S Dean, J Degenhardt, PA Delsart, C Deluca, D Derendarz, JE Derkaouid, A Dewhurst, B Dewilde, J Ernwein, S Errede

Abstract:

The dependence of the rate of proton–proton interactions on the centre-of-mass collision energy, √s, is of fundamental importance for both hadron collider physics and particle astrophysics. The dependence cannot yet be calculated from first principles; therefore, experimental measurements are needed. Here we present the first measurement of the inelastic proton–proton interaction cross-section at a centre-of-mass energy, √s, of 7 TeV using the ATLAS detector at the Large Hadron Collider. Events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic cross-section of 60.3±2.1 mb is measured for ξ>5×10−6, where ξ is calculated from the invariant mass, MX, of hadrons selected using the largest rapidity gap in the event. For diffractive events, this corresponds to requiring at least one of the dissociation masses to be larger than 15.7 GeV.