The SAURON project - IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies
Monthly Notices of the Royal Astronomical Society 366 (2006) 1126-1150
The central kinematics of NGC 1399 measured with 14 pc resolution
Monthly Notices of the Royal Astronomical Society 367 (2006) 2-18
Central stellar populations of early-type galaxies in low-density environments
Monthly Notices of the Royal Astronomical Society 370:3 (2006) 1213-1222
Abstract:
Following the pilot study of Kuntschner et al., we have investigated the properties of a volume-and magnitude-limited (cz > 10 000 km s-1, bJ > 16) sample of early-type galaxies that were carefully selected from the Anglo-Australian Observatory (AAO) two-degree field galaxy redshift survey (2dFGRS) to have no more than one and five companions within 1 and 2 Mpc, respectively. We used images from the Digital Sky Survey (DSS) to confirm the E/SO morphologies. We augmented this sample with field galaxies from Colbert et al. selected as having no neighbour within 1 Mpc and ±1000 km s-1. We present spectroscopic observations of 22 galaxies from the combined sample, from which central velocity dispersions and the Lick stellar population indices were measured. After carefully correcting the spectra for nebular emission, we derived luminosity-weighted ages, metallicities and α-element abundance ratios. We compare these isolated galaxies with samples of early-type galaxies in the Virgo and Coma clusters, and also with the previous sample of galaxies in low-density regions of Kuntschner et al. We find that galaxies in low-density environments are younger and have a greater spread of ages compared to cluster galaxies. They also show a wider range of metallicities at a given velocity dispersion than cluster galaxies, which display only supersolar metallicities. On average cluster, as well as, isolated galaxies show non-solar abundance ratios in α elements, suggesting that, independent of galactic environment, star formation occurred on short time-scales. However, the abundance ratios for our low-density environment sample galaxies do not scale with the stellar velocity dispersion as observed in clusters. In fact we detect a large spread at a given velocity dispersion even reaching solar abundance ratios. The metallicity of isolated early-type galaxies is found to correlate weakly with σ. We reason that early-type galaxies in low-density environments experienced merging-induced star formation episodes over a longer and more recent period of time compared to a cluster environment, and speculate that a considerable fraction of their stars formed out of low-metallicity halo gaseous material during the slow growth of a stellar disc between merging events. © 2006 RAS.Measuring the star formation rate of the universe at z ∼ 1 from Hα with multi-object near-infrared spectroscopy
Proceedings of the International Astronomical Union 2:S235 (2006) 394
Abstract:
We have demonstrated the first near-infrared multi-object spectrograph, CIRPASS, on the 4.2-m William Herschel Telescope (WHT) and the 3.9-m Anglo-Australian Telescope. We have conducted an H survey of 38 0.77 < z < 1 galaxies over ∼100 arcmin2 of the Hubble Deep Field North and Flanking Fields, to determine star formation rates (SFRs) using CIRPASS on the WHT. This represents the first successful application of this technique to observing high redshift galaxies (Doherty et al. 2004). Stacking the spectra in the rest-frame, we find a lower limit (uncorrected for dust reddening) on the star formation rate density at redshift z = 1 of 0.04 M yr1 Mpc 3 (Doherty et al. 2006). This implies rapid evolution in the star formation rate density from z = 0 to z = 1 which is proportional to (1 + z) 3.1. We intend to extend our work with FMOS on Subaru as the evolSMURF project (the Evolution of Star-formation and Metallicity in the Universe at high Redshift with FMOS). This will represent nearly two orders-of-magnitude improvement on previous work, and for the first time will provide a sample of sufficient size to measure accurately the H luminosity function, and so determine the global star formation rate using the same indicator as used in local surveys. Using [O II]3727 , H, [O III] 5007 and H redshifted into the z, J & H bands, we can chart the star formation history over 70% of the age of the Universe, affording complete coverage up to z = 1.6 with the same well-understood diagnostics. The line ratios will also allow the extinction and metallicity to be measured at z>1. This will resolve one of the long-standing puzzles in extragalactic astrophysics the true evolution of the Madau-Lilly diagram of star formation density. © 2007 International Astronomical Union.Non-Gaussianity in the Very Small Array cosmic microwave background maps with smooth goodness-of-fit tests
Monthly Notices of the Royal Astronomical Society 369:2 (2006) 909-920