CLOVER - A new instrument for measuring the B-mode polarization of the CMB

XXXIX Rencontres de Moriond, Exploring the Universe, La Thuile (2004)

Authors:

AC Taylor, A Challinor, D Goldie, K Grainge, ME Jones, AN Lasenby, S Withington, G Yassin, WK Gear, L Piccirillo, P Ade, PD Mauskopf, B Maffei, G Pisano

Abstract:

We describe the design and expected performance of Clover, a new instrument designed to measure the B-mode polarization of the cosmic microwave background. The proposed instrument will comprise three independent telescopes operating at 90, 150 and 220 GHz and is planned to be sited at Dome C, Antarctica. Each telescope will feed a focal plane array of 128 background-limited detectors and will measure polarized signals over angular multipoles 20 < l < 1000. The unique design of the telescope and careful control of systematics should enable the B-mode signature of gravitational waves to be measured to a lensing-confusion-limited tensor-to-scalar ratio r~0.005.

Unveiling the central parsec region of an AGN: the Circinus nucleus in the near infrared with the VLT

ArXiv astro-ph/0406620 (2004)

Authors:

M Almudena Prieto, K Meisenheimer, Olivier Marco, Juha Reunanen, Marcella Contini, Y Clenet, RI Davies, D Gratadour, Th Henning, U Klaas, J Kotilainen, Ch Leinert, D Lutz, D Rouan, N Thatte

Abstract:

VLT J- to M\p-band adaptive optics observations of the Circinus Galaxy on parsec scales resolve a central bright Ks-band source with a FWHM size of 1.9 $\pm$ 0.6 pc. This source is only visible at wavelengths longward of 1.6 $\mu$m and coincides in position with the peak of the [Si VII]~2.48 $\mu$m coronal line emission. With respect to the peak of the central optical emission, the source is shifted by $\sim$ 0.15\arcsec (2.8 pc) to the south-east. Indeed, it defines the vertex of a fairly collimated beam which extends for $\sim$ 10 pc, and which is seen in both continuum light shortward of 1.6 $\mu$m and in H$\alpha$ line emission. The source also lies at the center of a $\sim$ 19 pc size [Si VII] ionization {\it bicone}. Identifying this source as the nucleus of Circinus, its size is compatible with a putative parsec-scale torus. Its spectral energy distribution, characterized by a prominent narrow peak, is compatible with a dust temperature of 300 K. Hotter dust within a 1 pc radius of the center is not detected. The AGN luminosity required to heat this dust is in the range of X-ray luminosities that have been measured toward the central source. This in turn supports the existence of highly obscuring material, with column densities of $10^{24}$ cm$^{-2}$, that must be located within 1 pc of the core.

The 2dF Galaxy Redshift Survey: Spherical Harmonics analysis of fluctuations in the final catalogue

(2004)

Authors:

Will J Percival, Daniel Burkey, Alan Heavens, Andy Taylor, Shaun Cole, John A Peacock, Carlton M Baugh, Joss Bland-Hawthorn, Terry Bridges, Russell Cannon, Matthew Colless, Chris Collins, Warrick Couch, Gavin Dalton, Roberto De Propris, Simon P Driver, George Efstathiou, Richard S Ellis, Carlos S Frenk, Karl Glazebrook, Carole Jackson, Ofer Lahav, Ian Lewis, Stuart Lumsden, Steve Maddox, Peder Norberg, Bruce A Peterson, Will Sutherland, Keith Taylor

The 2dF galaxy redshift survey: Hierarchical galaxy clustering

Monthly Notices of the Royal Astronomical Society 351:2 (2004)

Authors:

CM Baugh, DJ Croton, E Gaztañaga, P Norberg, M Colless, IK Baldry, J Bland-Hawthorn, T Bridges, R Cannon, S Cole, C Collins, W Couch, G Dalton, R De Propris, SP Driver, G Efstathiou, RS Ellis, CS Frenk, K Glazebrook, C Jackson, O Lahav, I Lewis, S Lumsden, S Maddox, D Madgwick, JA Peacock, BA Peterson, W Sutherland, K Taylor

Abstract:

We use the Two-Degree Field Galaxy Redshift Survey (2dFGRS) to test the hierarchical scaling hypothesis: namely, that the p-point galaxy correlation functions can be written in terms of the two-point correlation function or variance. This scaling is expected if an initially Gaussian distribution of density fluctuations evolves under the action of gravitational instability. We measure the volume-averaged p-point correlation functions using a counts-in-cells technique applied to a volume-limited sample of 44 931 L* galaxies. We demonstrate that L* galaxies display hierarchical clustering up to order p = 6 in redshift space. The variance measured for L* galaxies is in excellent agreement with the predictions from a Λ-cold dark matter N-body simulation. This applies to all cell radii considered, 0.3 < (R/h-1 Mpc) < 30. However, the higher order correlation functions of L* galaxies have a significantly smaller amplitude than is predicted for the dark matter for R < 10 h-1 Mpc. This disagreement implies that a non-linear bias exists between the dark matter and L* galaxies on these scales. We also show that the presence of two rare, massive superclusters in the 2dFGRS has an impact on the higher-order clustering moments measured on large scales.

Deep SAURON spectral imaging of the diffuse Lyman α halo LAB1 in SSA 22

Monthly Notices of the Royal Astronomical Society 351:1 (2004) 63-69

Authors:

RG Bower, SL Morris, R Bacon, RJ Wilman, M Sullivan, S Chapman, RL Davies, PT De Zeeuw, E Emsellem

Abstract:

We have used the SAURON panoramic integral field spectrograph to study the structure of the Lyα emission-line halo, LAB1, surrounding the submillimetre galaxy SMM J221726+0013. This emission-line halo was discovered during a narrow-band imaging survey of the z = 3.1 large-scale structure in the SSA 22 region. Our observations trace the emission halo out to almost 100 kpc from the submillimetre source and identify two distinct Lyα 'mini-haloes' around the nearby Lyman-break galaxies. The main emission region has a broad line profile, with variations in the line profile seeming chaotic and lacking evidence for a coherent velocity structure. The data also suggest that Lyα emission is suppressed around the submillimetre source. Interpretation of the line structure needs care because Lyα may be resonantly scattered, leading to complex radiative transfer effects, and we suggest that the suppression in this region arises because of such effects. We compare the structure of the central emission-line halo with local counterparts, and find that the emission-line halo around NGC 1275 in the Perseus cluster may be a good local analogue, although the high-redshift halo is factor of ∼ 100 more luminous and appears to have higher velocity broadening. Around the Lyman-break galaxy C15, the emission line is narrower, and a clear shear in the emission wavelength is seen. A plausible explanation for the line profile is that the emission gas is expelled from C15 in a bipolar outflow, similar to that seen in M82.