CLOVER - A new instrument for measuring the B-mode polarization of the CMB
XXXIX Rencontres de Moriond, Exploring the Universe, La Thuile (2004)
Abstract:
We describe the design and expected performance of Clover, a new instrument designed to measure the B-mode polarization of the cosmic microwave background. The proposed instrument will comprise three independent telescopes operating at 90, 150 and 220 GHz and is planned to be sited at Dome C, Antarctica. Each telescope will feed a focal plane array of 128 background-limited detectors and will measure polarized signals over angular multipoles 20 < l < 1000. The unique design of the telescope and careful control of systematics should enable the B-mode signature of gravitational waves to be measured to a lensing-confusion-limited tensor-to-scalar ratio r~0.005.Unveiling the central parsec region of an AGN: the Circinus nucleus in the near infrared with the VLT
ArXiv astro-ph/0406620 (2004)
Abstract:
VLT J- to M\p-band adaptive optics observations of the Circinus Galaxy on parsec scales resolve a central bright Ks-band source with a FWHM size of 1.9 $\pm$ 0.6 pc. This source is only visible at wavelengths longward of 1.6 $\mu$m and coincides in position with the peak of the [Si VII]~2.48 $\mu$m coronal line emission. With respect to the peak of the central optical emission, the source is shifted by $\sim$ 0.15\arcsec (2.8 pc) to the south-east. Indeed, it defines the vertex of a fairly collimated beam which extends for $\sim$ 10 pc, and which is seen in both continuum light shortward of 1.6 $\mu$m and in H$\alpha$ line emission. The source also lies at the center of a $\sim$ 19 pc size [Si VII] ionization {\it bicone}. Identifying this source as the nucleus of Circinus, its size is compatible with a putative parsec-scale torus. Its spectral energy distribution, characterized by a prominent narrow peak, is compatible with a dust temperature of 300 K. Hotter dust within a 1 pc radius of the center is not detected. The AGN luminosity required to heat this dust is in the range of X-ray luminosities that have been measured toward the central source. This in turn supports the existence of highly obscuring material, with column densities of $10^{24}$ cm$^{-2}$, that must be located within 1 pc of the core.The 2dF Galaxy Redshift Survey: Spherical Harmonics analysis of fluctuations in the final catalogue
(2004)
The 2dF galaxy redshift survey: Hierarchical galaxy clustering
Monthly Notices of the Royal Astronomical Society 351:2 (2004)
Abstract:
We use the Two-Degree Field Galaxy Redshift Survey (2dFGRS) to test the hierarchical scaling hypothesis: namely, that the p-point galaxy correlation functions can be written in terms of the two-point correlation function or variance. This scaling is expected if an initially Gaussian distribution of density fluctuations evolves under the action of gravitational instability. We measure the volume-averaged p-point correlation functions using a counts-in-cells technique applied to a volume-limited sample of 44 931 L* galaxies. We demonstrate that L* galaxies display hierarchical clustering up to order p = 6 in redshift space. The variance measured for L* galaxies is in excellent agreement with the predictions from a Λ-cold dark matter N-body simulation. This applies to all cell radii considered, 0.3 < (R/h-1 Mpc) < 30. However, the higher order correlation functions of L* galaxies have a significantly smaller amplitude than is predicted for the dark matter for R < 10 h-1 Mpc. This disagreement implies that a non-linear bias exists between the dark matter and L* galaxies on these scales. We also show that the presence of two rare, massive superclusters in the 2dFGRS has an impact on the higher-order clustering moments measured on large scales.Deep SAURON spectral imaging of the diffuse Lyman α halo LAB1 in SSA 22
Monthly Notices of the Royal Astronomical Society 351:1 (2004) 63-69