The 2dF Galaxy Redshift Survey:: hierarchical galaxy clustering

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 351:2 (2004) L44-L49

Authors:

CM Baugh, DJ Croton, E Gaztañaga, P Norberg, M Colless, IK Baldry, J Bland-Hawthorn, T Bridges, R Cannon, S Cole, C Collins, W Couch, G Dalton, R De Propris, SP Driver, G Efstathiou, RS Ellis, CS Frenk, K Glazebrook, C Jackson, O Lahav, I Lewis, S Lumsden, S Maddox, D Madgwick, JA Peacock, BA Peterson, W Sutherland, K Taylor

The Gemini-North multi-object spectrograph: Performance in imaging, long-slit, and multi-object spectroscopic modes

PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC 116:819 (2004) 425-440

Authors:

IM Hook, I Jorgensen, JR Allington-Smith, RL Davies, N Metcalfe, RG Murowinski, D Crampton

The luminosity-metallicity relation in the local Universe from the 2dF Galaxy Redshift Survey

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 350:2 (2004) 396-406

Authors:

F Lamareille, M Mouhcine, T Contini, I Lewis, S Maddox

The second generation VLT instrument MUSE: Science drivers and instrument design

P SOC PHOTO-OPT INS 5492 (2004) 1145-1149

Authors:

R Bacon, S Bauer, R Bower, S Cabrit, M Cappellari, M Carollo, FO Combes, R Davies, B Delabre, H Dekker, J Devriendt, S Djidel, M Duchateau, JP Dubois, E Emsellem, P Ferruit, M Franx, G Gilmore, B Guiderdoni, F Henault, N Hubin, B Jungwiert, A Kelz, M Le Louarn, I Lewis, JL Lizon, R Mc Dermid, S Morris, U Laux, O Le Fevre, B Lantz, S Lilly, J Lynn, L Pasquin, A Pecontal, PPD Popovic, A Quirrenbach, R Reiss, M Roth, M Steinmetz, R Stuik, L Wisotzki, T de Zeeuw

Abstract:

The Multi Unit Spectroscopic Explorer (MUSE) is a second generation VLT panoramic integral-field spectrograph operating in the visible wavelength range. MUSE has a field of 1x1 arcmin(2) sampled at 0.20.2 arcsec(2) and is assisted by a ground layer adaptive optics system using four laser guide stars. The simultaneous spectral range is 0.465-0.93 mum, at a resolution of Rsimilar to3000. MUSE couples the discovery potential of a large imaging device to the measuring capabilities of a high-quality spectrograph, while taking advantage of the increased spatial resolution provided by adaptive optics. This makes MUSE a unique and tremendously powerful instrument for discovering and characterizing objects that lie beyond the reach of even the deepest imaging surveys. MUSE has also a high spatial resolution mode with 7.5x7.5 arcsec(2) field of view sampled at 25 milli-arcsec. In this mode MUSE should be able to get diffraction limited data-cube in the 0.6-1 mum wavelength range. Although MUSE design has been optimized for the study of galaxy formation and evolution, it has a wide range of possible applications; e.g. monitoring of outer planets atmosphere, young stellar objects environment, supermassive black holes and active nuclei in nearby galaxies or massive spectroscopic survey of stellar fields.

The K-band Hubble diagram of submillimetre galaxies and hyperluminous galaxies

Monthly Notices of the Royal Astronomical Society 346:4 (2003)

Authors:

S Serjeant, D Farrah, J Geach, T Takagi, A Verma, A Kaviani, M Fox

Abstract:

We present the K-baad Hubble diagrams (K-z relations) of submillimetre-selected galaxies and hyperluminous galaxies (HLIRGs). We report the discovery of a remarkably tight K-z relation of HLIRGs, indistinguishable from that of the most luminous radio galaxies. Like radio galaxies, the HLIRG K-z relation at z ∼ 3 is consistent with a passively evolving ∼3L* instantaneous starburst starting from a redshift of z ∼ 10. In contrast, many submillimetre-selected galaxies are ≳2 mag fainter, and the population has a much larger dispersion. We argue that dust obscuration and/or a larger mass range may be responsible for this scatter. The galaxies so far proved to be hyperluminous may have been biased towards higher AGN bolometric contributions than submillimetre-selected galaxies due to the 60-μm selection of some, so the location on the K-z relation may be related to the presence of the most massive active galactic nucleus. Alternatively, a particular host galaxy mass range may be responsible for both extreme star formation and the most massive active nuclei.