Observations and a model for the infrared continuum of Centaurus A

Monthly Notices of the Royal Astronomical Society 310:1 (1999) 78-86

Authors:

DM Alexander, A Efstathiou, JH Hough, DK Aitken, D Lutz, PF Roche, E Sturm

Abstract:

We present ISOSWS, ISOPHOT_S and 8-13 μm observations of Centaurus A which show prominent PAH and silicate features. These and other data are used to construct a model for the infrared continuum. We find that, in a small nuclear aperture (∼4 arcsec, ∼60 pc), the spectral energy distribution is characteristic of emission from a starburst and dusty AGN torus; in larger apertures, additional components of cirrus and starburst emission are required. The model components are based on the radiative transfer models of Efstathiou et al. which include multiple scattering and the radiative effects of a dust-embedded source with a distribution of grain species and sizes. The torus component is modelled in terms of a tapered dusty disc centrally illuminated by a quasar-like source. The cirrus and starburst components are, respectively, modelled in terms of diffuse dust illuminated by the interstellar medium and an ensemble of optically thick molecular clouds centrally illuminated by hot stars. These latter components additionally include emission from small graphite particles and PAHs. Based on our overall model, the torus diameter is estimated to be 3.6pc and the best inclination angle of the torus is 45°. We present independent observational evidence for this structure. This result has implications for the detectability of tori in low-power AGN and for the use of the IRAS 60/25-μm flux ratio as an indicator of the torus inclination.

Are recent peculiar velocity surveys consistent?

Cosmic Flows 1999: Towards an Understanding of Large-Scale Structures Astronomical Society of the Pacific (1999)

Authors:

MJ Hudson, RJ Smith, DJ Schlegel, Roger Davies

Abstract:

We compare the bulk flow of the SMAC sample to the predictions of popular cosmological models and to other recent large-scale peculiar velocity surveys. Both analyses account for aliasing of small-scale power due to the sparse and non-uniform sampling of the surveys. We conclude that the SMAC bulk flow is in marginal conflict with flat COBE-normalized Lambda-CDM models which fit the cluster abundance constraint. However, power spectra which are steeper shortward of the peak are consistent with all of the above constraints. When recent large-scale peculiar velocity surveys are compared, we conclude that all measured bulk flows (with the possible exception of that of Lauer & Postman) are consistent with each other given the errors, provided the latter allow for `cosmic covariance'. A rough estimate of the mean bulk flow of all surveys (except Lauer & Postman) is ~400 km/s towards l=270, b=0.

On the CCD Calibration of Zwicky galaxy magnitudes & The Properties of Nearby Field Galaxies

(1999)

Authors:

E Gaztanaga, GB Dalton

The APM cluster-galaxy cross-correlation function: Constraints on Ω and galaxy bias

Monthly Notices of the Royal Astronomical Society 305:3 (1999) 547-562

Authors:

RAC Croft, GB Dalton, G Efstathiou

Abstract:

We estimate the cluster-galaxy cross-correlation function (ξcg), from the APM galaxy and galaxy cluster surveys. We obtain estimates both in real space from the inversion of projected statistics and in redshift space using the galaxy and cluster redshift samples. The amplitude of ξcg is found to be almost independent of cluster richness. At large separations, r ≳ 5 h-1 Mpc (h = H0/100 km s-1 Mpc-1, where H0 is the Hubble constant), ξcg has a similar shape to the galaxy-galaxy and cluster-cluster autocorrelation functions. ξcg in redshift space can be related to the real-space ξcg by convolution with an appropriate velocity field model. Here we apply a spherical collapse model, which we have tested against N-body simulations, finding that it provides an accurate description of the averaged infall velocity of matter into galaxy clusters. We use this model to estimate β(β = Ω0.6/b, where b is the linear bias parameter), and find that it tends to overestimate the true result in simulations by only ∼10-30 per cent. Application to the APM results yields β = 0.46 with β < 0.73 at 95 per cent confidence. This measure is complementary to the estimates made of the density parameter from larger scale bulk flows and from the virialized regions of clusters on smaller scales. We also compare the APM ξcg and galaxy autocorrelations directly with the mass correlation and cluster-mass correlations in COBE-normalized simulations of popular cosmological models, and derive two independent estimates of the galaxy biasing expected as a function of scale. This analysis reveals that both low-density and critical-density COBE-normalized cold dark matter (CDM) models require anti-biasing by a factor ∼2 on scales r ≤ 2 h-1 Mpc, and that the mixed dark matter (MDM) model is consistent with a constant biasing factor on all scales. The critical-density CDM model also suffers from the usual deficit of power on large scales (r ≳ 20 h-1 Mpc). We use the velocity fields predicted from the different models to distort the APM real-space cross-correlation function. Comparison with the APM redshift-space ξcg yields an estimate of the value of Ω0.6 needed in each model. We find that only the low-Ω model is fully consistent with observations, with MDM marginally excluded at the ∼2σ level.

Gas Dynamics in the Luminous Merger NGC 6240

ArXiv astro-ph/9905031 (1999)

Authors:

LJ Tacconi, R Genzel, M Tecza, JF Gallimore, D Downes, NZ Scoville

Abstract:

We report 0.5"x0.9" resolution, interferometric observations of the 1.3 mm CO J=2-1 line in the infrared luminous galactic merger NGC 6240. About half of the CO flux is concentrated in a rotating but highly turbulent, thick disk structure centered between the two radio and near-infrared nuclei. A number of gas features connect this ~500 pc diameter central disk to larger scales. Throughout this region the molecular gas has local velocity widths which exceed 300 km/s FWHM and even reach FWZP line widths of 1000 km/s in a number of directions. The mass of the central gas concentration constitutes a significant fraction of the dynamical mass, M_gas(R<470 pc) ~ 2-4x10^9 M_o ~ 0.3-0.7 M_dyn. We conclude that NGC 6240 is in an earlier merging stage than the prototypical ultraluminous galaxy, Arp 220. The interstellar gas in NGC 6240 is in the process of settling between the two progenitor stellar nuclei, is dissipating rapidly and will likely form a central thin disk. In the next merger stage, NGC 6240 may well experience a major starburst like that observed in Arp 220.