Seyfert Activity and Nuclear Star Formation in the Circinus Galaxy

ArXiv astro-ph/9709091 (1997)

Authors:

R Maiolino, A Krabbe, N Thatte, R Genzel

Abstract:

We present high angular resolution (0".15-0".5) near infrared images and spectroscopy of the Circinus galaxy, the closest Seyfert 2 galaxy known. The data reveal a non-stellar nuclear source at 2.2 microns. The coronal line region and the hot molecular gas emission extend for 20-50 pc in the ionization cone. The data do not show evidence for a point-like concentration of dark mass; we set an upper limit of 4*10^6 Mo to the mass of a putative black hole. We find evidence for a young nuclear stellar population, with typical ages between 4*10^7 and 1.5*10^8 yrs. The luminosity of the starburst inside a few hundred pc is comparable to the intrinsic luminosity of the Seyfert nucleus, and the two of them together account for most of the observed bolometric luminosity of the galaxy. Within the central 12 pc the starburst has an age of about 7*10^7 yrs and radiates about 2% of the luminosity of the active nucleus. We discuss the implications of these results for models that have been proposed for the starburst-AGN connection.

Measuring frequency response of surface-micromachined resonators

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 3225 (1997) 32-43

Authors:

William D Cowan, Victor M Bright, George C Dalton

The Power Spectrum of Rich Clusters of Galaxies on Large Spatial Scales

(1997)

Authors:

Helen Tadros, George Efstathiou, Gavin Dalton

Detection of a Cosmic Microwave Background Decrement toward the z = 3.8 Quasar Pair PC 1643+4631A, B

The Astrophysical Journal American Astronomical Society 479:1 (1997) l1-l3

Authors:

Michael E Jones, Richard Saunders, Joanne C Baker, Garret Cotter, Alastair Edge, Keith Grainge, Toby Haynes, Anthony Lasenby, Guy Pooley, Huub Röttgering

Optical and infrared investigation toward the z = 3.8 quasar pair PC 1643+4631A, B

Astrophysical Journal Letters 479:1 (1997) L5-L8

Authors:

R Saunders, JC Baker, MN Bremer, AJ Bunker, G Cotter, S Eales, K Grainge, T Haynes, ME Jones, M Lacy, G Pooley, S Rawlings

Abstract:

In a companion Letter, Jones et al. report the discovery of a cosmic microwave background decrement, indicative of a distant cluster with mass ∼1015 M⊙, toward the quasar pair PC 1643+4631A, B (z = 3.79, 3.83, separation 1980). To search for the cluster responsible, we have obtained R-, J-, and K-band images of the field and have also carried out optical spectroscopy of selected objects in it. No such cluster is evident in these images. Assuming that the cluster causing the decrement is similar to massive clusters already known, our magnitude limits imply that it must lie at about or beyond z = 1. This provides independent support for the X-ray-based distance argument of Jones et al. The cluster must gravitationally lens objects behind it; for a cluster z around 1-2, the Einstein ring radius for sources at z ≈ 3.8 is ∼100″. Simple modeling, producing simultaneously the Sunyaev-Zeldovich effect and the lensing, shows that the source positions of quasars A and B lie within 1100 of each other and may indeed be coincident. The two quasar spectra are found to be remarkably similar apart from their 1% redshift difference. Assuming that A and B are images of a single quasar, we present a possible explanation of this difference.