3D: A new tool for probing the stars and ISM in AGN
Vistas in Astronomy 40:1 (1996) 227-231
Abstract:
3D, the new MPE NIR imaging spectrometer, provides us with a unique opportunity to probe in detail the structure of the stars, ionized gas, and hot molecular gas in the very centers of AGN. The instrument delivers data cubes with 16×160.5″ pixels which are 256 spectral channels deep. Thus, in a single observation we are able to obtain data on the entire K-Band over an 8″×8″ field of view, with a spectral resolution of R = λ/Δλ = 1000. In this paper we detail the working principles behind the instrument, and show first results from observations of the inner regions of the Seyfert 1 galaxy NGC 7469 made at the Calar Alto observatory. Copyright ©1996 Elsevier Science Ltd.3D: The next generation near-infrared imaging spectrometer
Astronomy and Astrophysics Supplement Series 119:3 (1996) 531-546
Abstract:
The new MPE near infrared imaging spectrometer 3D represents a new generation of astronomical instrumentation. It is based on a 2562 NICMOS-3 Rockwell array and can simultaneously obtain 256 H- or K-band spectra at R= 1100 or 2100 from a square 16×16 pixel field on the sky. Typical pixel scales are 0.3″/pixel or 0.5″/pixel. 3D is a combination of a novel image slicer and a liquid nitrogen cooled long slit spectrometer. It includes high definition on-axis lens optics, a high efficiency directly ruled KRS-5 grism as well as a cold closed-loop piezo-driven tilt mirror allowing full spectral sampling. The instrument efficiency including detector is 15%. Combining the advantages of imaging and spectroscopy increases the observing efficiency on key astronomical objects (e.g. galactic nuclei) by such a large factor over existing grating or Fabry-Perot spectrometers that subarcsecond near-IR spectroscopy of faint Seyferts, starbursts, quasars, or distant galaxy clusters becomes feasible for the first time with 4m-class telescopes. As a portable instrument 3D has already been successfully deployed on several 2 and 4m-class telescopes.An investigation of the 3-μm emission bands in planetary nebulae
Monthly Notices of the Royal Astronomical Society 280:3 (1996) 924-936
Abstract:
Spectra are presented of 21 planetary nebulae spanning the well-known, but still unidentified, narrow emission features at 3.2-3.6 μm. The equivalent width of the 3.29-μm emission band is strongly correlated with the gas-phase carbon-to-oxygen ratio, as expected for a band origin in carbon-rich grains or molecules. It displays an approximately linear dependence upon the C/O ratio, with a threshold near C/O ∼0.6. The emission band is present in 18 of the 21 nebulae, being absent in three of the six oxygen-rich objects and only weakly present in a fourth. The profile of the , 3.29-μm band is closely similar in all of the nebulae and distinct from the band profile seen in some stellar envelopes. Weaker emission features in the 3.4-3.5 μm region are detected in nine objects, and are prominent only in nitrogen-rich type I nebulae. The intensity of the 3.4-μm feature in these objects is correlated with that of the 3.29-μm band, while the ratio of the two bands is strongly correlated with the nitrogen abundance. Possible explanations for this behaviour are discussed.Autoguidance improves IR spectrograph resolution
Laser Focus World 32:1 (1996)
Abstract:
Near-infrared imaging spectroscopy at spatial resolutions of 0.5 arc sec can already be achieved by combining the spatial and spectral resolution of an IR-imaging spectrometer with a first-oreder adaptive-optics system and accurate autoguider. This development makes high-resolution near-IR imaging spectroscopy possible for astronomy.Interstellar dust absorption features in the infrared spectrum of HH 100-IR: Searching for the nitrogen component of the ICES
Astrophysical Journal 458:1 PART I (1996) 363-370