The E-ELT Multi-Object Spectrograph: latest news from MOSAIC
Abstract:
There are 8000 galaxies, including 1600 at z≥ 1.6, which could be simultaneously observed in an E-ELT field of view of 40 arcmin^2. A considerable fraction of astrophysical discoveries require large statistical samples, which can only be obtained with multi-object spectrographs (MOS). MOSAIC will provide a vast discovery space, enabled by a multiplex of 200 and spectral resolving powers of R=5000 and 20000. MOSAIC will also offer the unique capability of more than 10 `high-definition' (multi-object adaptive optics, MOAO) integral-field units, optimised to investigate the physics of the sources of reionization. The combination of these modes will make MOSAIC the world-leading MOS facility, contributing to all fields of contemporary astronomy, from extra-solar planets, to the study of the halo of the Milky Way and its satellites, and from resolved stellar populations in nearby galaxies out to observations of the earliest ‘first-light’ structures in the Universe. It will also study the distribution of the dark and ordinary matter at all scales and epochs of the Universe.
Recent studies of critical technical issues such as sky-background subtraction and MOAO have demonstrated that such a MOS is feasible with state-of-the-art technology and techniques. Current studies of the MOSAIC team include further trade-offs on the wavelength coverage, a solution for compensating for the non-telecentric new design of the telescope, and tests of the saturation of skylines especially in the near-IR bands. In the 2020s the E-ELT will become the world's largest optical/IR telescope, and we argue that it has to be equipped as soon as possible with a MOS to provide the most efficient, and likely the best way to follow-up on James Webb Space Telescope (JWST) observations.
The complex evolutionary paths of local infrared bright galaxies: a high-angular resolution mid-infrared view
Abstract:
We investigate the evolutionary connection between local infrared (IR)-bright galaxies (logLIR ≥11.4 Lʘ) and quasars. We use high-angular resolution (∼0.3–0.4 arcsec∼few hundred parsecs) 8–13µm ground-based spectroscopy to disentangle the active galactic nuclei (AGN) id-IR properties from those of star formation. The comparison between the nuclear 11.3µm polycyclic aromatic hydrocarbon feature emission and that measured with Spitzer/Spitzer Infrared Spectrograph indicates that the star formation is extended over a few kpc in the IRbright galaxies. The AGN contribution to the total IR luminosity of IR-bright galaxies is lower than in quasars. Although the dust distribution is predicted to change as IR-bright galaxies evolve to IR-bright quasars and then to optical quasars, we show that the AGN mid-IR emission of all the quasars in our sample is not significantly different. In contrast, the nuclear emission of IR-bright galaxies with low AGN contributions appears more heavily embedded in dust although there is no clear trend with the interaction stage or projected nuclear separation. This suggests that the changes in the distribution of the nuclear obscuring material may be taking place rapidly and at different interaction stages washing out the evidence of an evolutionary path. When compared to normal AGN, the nuclear star formation activity of quasars appears to be dimming, whereas it is enhanced in some IR-bright nuclei, suggesting that the latter are in an earlier star formation-dominated phase.Natural guide-star processing for wide-field laser-assisted AO systems
Abstract:
Sky-coverage in laser-assisted AO observations largely depends on the system's capability to guide on the faintest natural guide-stars possible. Here we give an up-to-date status of our natural guide-star processing tailored to the European-ELT's visible and near-infrared (0.47 to 2.45 μm) integral field spectrograph — Harmoni.We tour the processing of both the isoplanatic and anisoplanatic tilt modes using the spatio-angular approach whereby the wavefront is estimated directly in the pupil plane avoiding a cumbersome explicit layered estimation on the 35-layer profiles we're currently using.
Taking the case of Harmoni, we cover the choice of wave-front sensors, the number and field location of guide-stars, the optimised algorithms to beat down angular anisoplanatism and the performance obtained with different temporal controllers under split high-order/low-order tomography or joint tomography. We consider both atmospheric and far greater telescope wind buffeting disturbances. In addition we provide the sky-coverage estimates thus obtained.