The Black Hole Candidate Swift J1728.9–3613 and the Supernova Remnant G351.9–0.9

The Astrophysical Journal American Astronomical Society 947:1 (2023) 38

Authors:

Mayura Balakrishnan, Paul A Draghis, Jon M Miller, Joe Bright, Robert Fender, Mason Ng, Edward Cackett, Andrew Fabian, Kip Kuntz, James CA Miller-Jones, Daniel Proga, Paul S Ray, John Raymond, Mark Reynolds, Abderahmen Zoghbi

MIGHTEE-H i: possible interactions with the galaxy NGC 895

Monthly Notices of the Royal Astronomical Society Oxford University Press 521:4 (2023) 5177-5190

Authors:

B Namumba, J Román, J Falcón-Barroso, Jh Knapen, R Ianjamasimanana, E Naluminsa, Gig Józsa, M Korsaga, N Maddox, B Frank, S Sikhosana, S Legodi, C Carignan, Aa Ponomareva, T Jarrett, D Lucero, Om Smirnov, Jm Van Der Hulst, Dj Pisano, K Malek, L Marchetti, M Vaccari, M Jarvis, M Baes, M Meyer, Eak Adams, H Chen, J Delhaize, Sha Rajohnson, S Kurapati, I Heywood, L Verdes-Montenegro

Abstract:

The transformation and evolution of a galaxy is strongly influenced by interactions with its environment. Neutral hydrogen (H i) is an excellent way to trace these interactions. Here, we present H i observations of the spiral galaxy NGC 895, which was previously thought to be isolated. High-sensitivity H i observations from the MeerKAT large survey project MIGHTEE reveal possible interaction features, such as extended spiral arms and the two newly discovered H i companions, that drive us to change the narrative that it is an isolated galaxy. We combine these observations with deep optical images from the Hyper Suprime Camera to show an absence of tidal debris between NGC 895 and its companions. We do find an excess of light in the outer parts of the companion galaxy MGTH_J022138.1-052631, which could be an indication of external perturbation and thus possible sign of interactions. Our analysis shows that NGC 895 is an actively star-forming galaxy with a SFR of 1.75 ± 0.09[M⊙/yr], a value typical for high-stellar mass galaxies on the star-forming main sequence. It is reasonable to state that different mechanisms may have contributed to the observed features in NGC 895, and this emphasizes the need to revisit the target with more detailed observations. Our work shows the high potential and synergy of using state-of-the-art data in both H i and optical to reveal a more complete picture of galaxy environments.

Precise Measurements of Self-absorbed Rising Reverse Shock Emission from Gamma-ray Burst 221009A

(2023)

Authors:

Joe S Bright, Lauren Rhodes, Wael Farah, Rob Fender, Alexander J van der Horst, James K Leung, David RA Williams, Gemma E Anderson, Pikky Atri, David R DeBoer, Stefano Giarratana, David A Green, Ian Heywood, Emil Lenc, Tara Murphy, Alexander W Pollak, Pranav H Premnath, Paul F Scott, Sofia Z Sheikh, Andrew Siemion, David J Titterington

The 2019 outburst of AMXP SAX J1808.4–3658 and radio follow up of MAXI J0911–655 and XTE J1701–462

Monthly Notices of the Royal Astronomical Society Oxford University Press 521:2 (2023) 2806-2813

Authors:

Kvs Gasealahwe, Im Monageng, Robert P Fender, Pa Woudt, Sara Elisa Motta, Jakob van den Eijnden, Dra Williams, Ian Heywood, S Bloemen, Pj Groot, P Vreeswijk, V McBride, M Klein-Wolt, E Kording, R Le Poole, D Pieterse, S de Wet

Abstract:

We present radio coverage of the 2019 outburst of the accreting millisecond X-ray pulsar (AMXP) SAX J1808.4–3658, obtained with MeerKAT. We compare these data to contemporaneous X-ray and optical measurements in order to investigate the coupling between accretion and jet formation in this system, while the optical light curve provides greater detail of the outburst. The reflaring activity following the main outburst peak was associated with a radio re-brightening, indicating a strengthening of the jet in this phase of the outburst. We place quasi-simultaneous radio and X-ray measurements on the global radio:X-ray plane for X-ray binaries, and show they reside in the same region of luminosity space as previous outburst measurements, but significantly refine the correlation for this source. We also present upper limits on the radio emission from the AMXP MAXI J0911–655 and the transitional Z/Atoll-type transient XTE J1701–462. In the latter source, we also confirm that nearby large-scale structures reported in previous radio observations of the source are persistent over a period of ∼15 yr, and so are almost certainly background radio galaxies and not associated with the X-ray transient.

Search and Characterization of Remnant Radio Galaxies in the XMM-LSS Deep Field

The Astrophysical Journal American Astronomical Society 944:2 (2023) 176

Authors:

Sushant Dutta, Veeresh Singh, CH Ishwara Chandra, Yogesh Wadadekar, Abhijit Kayal, Ian Heywood