The 2019 outburst of AMXP SAX J1808.4–3658 and radio follow up of MAXI J0911–655 and XTE J1701–462

Monthly Notices of the Royal Astronomical Society Oxford University Press 521:2 (2023) 2806-2813

Authors:

Kvs Gasealahwe, Im Monageng, Robert P Fender, Pa Woudt, Sara Elisa Motta, Jakob van den Eijnden, Dra Williams, Ian Heywood, S Bloemen, Pj Groot, P Vreeswijk, V McBride, M Klein-Wolt, E Kording, R Le Poole, D Pieterse, S de Wet

Abstract:

We present radio coverage of the 2019 outburst of the accreting millisecond X-ray pulsar (AMXP) SAX J1808.4–3658, obtained with MeerKAT. We compare these data to contemporaneous X-ray and optical measurements in order to investigate the coupling between accretion and jet formation in this system, while the optical light curve provides greater detail of the outburst. The reflaring activity following the main outburst peak was associated with a radio re-brightening, indicating a strengthening of the jet in this phase of the outburst. We place quasi-simultaneous radio and X-ray measurements on the global radio:X-ray plane for X-ray binaries, and show they reside in the same region of luminosity space as previous outburst measurements, but significantly refine the correlation for this source. We also present upper limits on the radio emission from the AMXP MAXI J0911–655 and the transitional Z/Atoll-type transient XTE J1701–462. In the latter source, we also confirm that nearby large-scale structures reported in previous radio observations of the source are persistent over a period of ∼15 yr, and so are almost certainly background radio galaxies and not associated with the X-ray transient.

Search and Characterization of Remnant Radio Galaxies in the XMM-LSS Deep Field

The Astrophysical Journal American Astronomical Society 944:2 (2023) 176

Authors:

Sushant Dutta, Veeresh Singh, CH Ishwara Chandra, Yogesh Wadadekar, Abhijit Kayal, Ian Heywood

A unique, ring-like radio source with quadrilateral structure detected with machine learning

Monthly Notices of the Royal Astronomical Society Oxford University Press 520:1 (2023) 1439-1446

Authors:

M Lochner, L Rudnick, I Heywood, K Knowles, Ss Shabala

Abstract:

We report the discovery of a unique object in the MeerKAT Galaxy Cluster Legacy Survey (MGCLS) using the machine learning anomaly detection framework ASTRONOMALY. This strange, ring-like source is 30′ from the MGCLS field centred on Abell 209, and is not readily explained by simple physical models. With an assumed host galaxy at redshift 0.55, the luminosity (1025 W Hz−1) is comparable to powerful radio galaxies. The source consists of a ring of emission 175 kpc across, quadrilateral enhanced brightness regions bearing resemblance to radio jets, two “ears” separated by 368 kpc, and a diffuse envelope. All of the structures appear spectrally steep, ranging from -1.0 to -1.5. The ring has high polarization (25%) except on the bright patches (<10%). We compare this source to the Odd Radio Circles recently discovered in ASKAP data and discuss several possible physical models, including a termination shock from starburst activity, an end-on radio galaxy, and a supermassive black hole merger event. No simple model can easily explain the observed structure of the source. This work, as well as other recent discoveries, demonstrates the power of unsupervised machine learning in mining large datasets for scientifically interesting sources.

MeerKAT follow-up of enigmatic GLEAM 4-Jy (G4Jy) sources

Monthly Notices of the Royal Astronomical Society Oxford University Press 518:3 (2022) 4290-4309

Authors:

Precious K Sejake, Sarah V White, Ian Heywood, Kshitij Thorat, Hertzog L Bester, Sphesihle Makhathini, Bernie Fanaroff

Abstract:

We present the results from studying 140 radio sources in the GLEAM (GaLactic and Extragalactic All-sky MWA [Murchison Widefield Array]) 4-Jy (G4Jy) Sample. These sources were followed-up with MeerKAT to assess their radio morphology and enable host-galaxy identification, as existing radio images of 25 to 45-arcsec resolution do not provide sufficient information. We refer to these sources as the MeerKAT-2019 subset. The aim is to identify the host galaxy of these sources by visually inspecting the overlays comprising radio data from four surveys (at 150, 200, 843/1400, and 1300 MHz). Our morphological classification and host-galaxy identification relies upon the ∼7-arcsec resolution images from MeerKAT (1300 MHz). Through the visual inspection of the overlays, 14 radio sources in the MeerKAT-2019 subset have wide-angle tail (WAT) morphology, 10 are head-tail, and 5 have X-, S-/Z-shaped morphology. Most of the remaining sources have the radio morphology of typical symmetric lobes. Of 140 sources, we find host galaxies for 98 sources, leaving 42 with no identified host galaxy. These 42 sources still have ambiguous identification even with higher resolution images from MeerKAT.

MIGHTEE: deep 1.4 GHz source counts and the sky temperature contribution of star forming galaxies and active galactic nuclei

Monthly Notices of the Royal Astronomical Society Oxford University Press 520:2 (2022) 2668-2691

Authors:

Cl Hale, Ih Whittam, Mj Jarvis, Pn Best, Nl Thomas, I Heywood, M Prescott, N Adams, J Afonso, Fangxia An, Raa Bowler, Jd Collier, Rhw Cook, R Davé, Bs Frank, M Glowacki, Pw Hatfield, S Kolwa, Cc Lovell, N Maddox, L Marchetti, Lk Morabito, E Murphy, I Prandoni, Z Randriamanakoto, Ar Taylor

Abstract:

We present deep 1.4 GHz source counts from ∼5 deg2 of the continuum Early Science data release of the MeerKAT International Gigahertz Tiered Extragalactic Exploration (MIGHTEE) survey down to S1.4GHz ∼15 μJy. Using observations over two extragalactic fields (COSMOS and XMM-LSS), we provide a comprehensive investigation into correcting the incompleteness of the raw source counts within the survey to understand the true underlying source count population. We use a variety of simulations that account for: errors in source detection and characterisation, clustering, and variations in the assumed source model used to simulate sources within the field and characterise source count incompleteness. We present these deep source count distributions and use them to investigate the contribution of extragalactic sources to the sky background temperature at 1.4 GHz using a relatively large sky area. We then use the wealth of ancillary data covering a subset of the COSMOS field to investigate the specific contributions from both active galactic nuclei (AGN) and star forming galaxies (SFGs) to the source counts and sky background temperature. We find, similar to previous deep studies, that we are unable to reconcile the sky temperature observed by the ARCADE 2 experiment. We show that AGN provide the majority contribution to the sky temperature contribution from radio sources, but the relative contribution of SFGs rises sharply below 1 mJy, reaching an approximate 15-25 per cent contribution to the total sky background temperature (Tb ∼100 mK) at ∼15 μJy.