Simulations and interpretation of the 6-cm MERLIN images of the classical nova V723 Cas
Abstract:
We compare the predictions of simple models for the radio emission from classical novae with the MERLIN radio observations of nova V723 Cas (Nova Cas 1995). Spherically symmetric and ellipsoidal radiative transfer models are implemented in order to generate synthetic emission maps. These are then convolved with an accurate representation of the uv coverage of MERLIN. The parameters and geometry of the shell model are based on those returned by fitting models to the observed light curve. This allows direct comparison of the model images with the nine 6-cm MERLIN images of V723 Cas. It is found that the seemingly complex structure (clumping, apparent rotation) evident in the observations can actually be reproduced with a simple spherical emission model. The simulations show that a 24-h track greatly reduces the instrumental effects and the synthetic radio map is a closer representation of the true (model) sky brightness distribution. It is clear that interferometric arrays with sparse uv coverage (e.g. MERLIN, VLBA) will be more prone to these instrumental effects especially when imaging ring-like objects with time-dependent structure variations. A modelling approach such as that adopted here is essential when interpreting observations. © 2007 RAS.Six months of mass outflow and inclined rings in the ejecta of V1494 Aql
Finding radio transients
Abstract:
Modern radio telescopes are data-intensive machines, producing many TB of data every night. Amongst this deluge of data are transient and variable phenomena, whose study can shed new light on processes as varied as stellar dynamos and the accretion discs in supermassive black holes. In this work I demonstrate the applicability of different methods to the discovery of these astrophysical transients and variables coming from telescopes such as MeerKAT.
I first consider a standard approach to discovering transients by characterising their variability. By making use of even modest sampling with the high sensitivity and wide field of view of MeerKAT, I demonstrate how we are now able to uncover new transients almost by accident - if we exclude the vast amount of time spent planning, building and operating excellent telescopes, efficient pipelines and well- crafted observing proposals. In this work I found a stellar flare from a nearby M dwarf, which was then followed up and complemented by optical and X-ray photometry and spectroscopy, providing new insights on the system.
Next I built a citizen science platform in order to perform such transient searches at scale, making use of a wide range of data available in the MeerKAT archive. I detail the process of review and beta-testing that resulted in the final design of the Bursts from Space: MeerKAT project. Over 1000 volunteers took part, demonstrating a healthy appetite for further Zooniverse data releases. Volunteers discovered or recovered a wide range of phenomena, from flare stars and pulsars to scintillating AGN and transient OH maser emission. I was also able to use the known transients in our fields to understand some reasons why interesting sources may be missed and will fold this learning through to future iterations of the project. This is the first demonstration of volunteers finding radio transients in images.
Finally, I show how anomaly detection, an unsupervised machine learning approach, is a suitable tool for finding these variable phenomena at scale, as is required for modern astronomical surveys. I use three feature sets as applied to two anomaly detection techniques in the Astronomaly package and analyse anomaly detection performance by comparison with citizen science labels. By using transients found by citizen scientists as a ground truth I demonstrate that anomaly detection techniques can recall over half of the radio transients within 10% of the sample dataset. I find that the choice of feature set is crucial, especially when considering available resources for human inspection and follow-up. I find that active learning on ∼2% of the data improves recall by up to 10%, depending on the feature-model pair. The best performing feature-model pairs result in a factor of 5 times fewer sources requiring vetting by humans. This is the first effort to apply anomaly detection techniques to finding radio transients and shows great promise for application to other datasets, a real-time transient detection system and upcoming large surveys.
Radio studies of relativistic outflows from black hole transients
Abstract:
In this thesis I will present observational studies of transient systems that produce mildly to extremely relativistic outflows through a coupling to an accretion flow. I will focus on the analysis of data taken from three source classes: black hole X-ray binaries (BHXRBs; particularly the system MAXI J1820+070), gamma-ray bursts (GRBs; particularly the system GRB 171010A), and tidal disruption events (TDEs; particularly the systems ASASSN-14li and Swift J1644+57).
I will present an extensive radio monitoring campaign on MAXI J1820+070 utilising five different interferometers, along with extensive X-ray observations, during the system's 2018 outburst. Together these data allowed me to probe the coupling between accretion and jet production throughout an entire outburst cycle, as well as during multiple hard accretion state only re-brightenings, tracked over a two year time frame. As MAXI J1820+070 transitioned from the hard to soft accretion state, contemporaneous time-series indicators of the launch of bipolar relativistic ejections were observed at both radio and X-ray frequencies (manifesting as a radio flare and an evolving quasi-period oscillation, respectively). I then confirmed the presence of these ejecta utilising multiple interferometers, and was able to track the evolution of both the approaching and receding ejecta for over ~150 d. Through utilising interferometers sensitive to very different angular scales, I was able to infer the internal energy of the ejection, and found it to be much larger than the value implied from the state transition radio flare. This is strong evidence for ongoing particle acceleration as ejections interact with the surrounding interstellar medium. In addition to the study of MAXI J1820+070, I will also present a broader population study of state transition radio flares from black hole X-ray binaries, and demonstrate that commonly employed models (which attribute flares to an optical depth evolution from an expanding region) are not appropriate for the majority of flares in the sample studied. I describe the ability of extended periods of particle acceleration to explain the flare profiles.
GRB 171010A was a luminous and nearby long GRB detected at early times by the Arcminute Microkelvin Imager Large Array interferometer, as well as with the Swift X-ray telescope. Long GRBs produce highly relativistic outflows that are best studied through their interaction with the circumburst material. This interaction produced a broadband synchrotron afterglow. I present a study of the radio through X-ray afterglow of GRB 171010A in the context of the fireball model (which details the interaction of the jet and interstellar medium). By fitting the time evolving spectra, the values and evolution of the characteristic synchrotron frequencies can be inferred. GRB 171010A is one of the most energetic GRBs detected below z~0.5, allowing for our theoretical understanding of afterglows to be investigated. While I find general agreement with the canonical models (particularly the spectral indices either side of the minimum energy frequency) a number of deviations are seen. I discuss possible solutions to these deviations, which likely include the addition of a second spectral component resulting from a reverse shock.
Finally, I will present late time radio and X-ray observations of the thermal TDE ASASSN-14li, and late time radio only observations of the relativistic TDE Swift J1644+57. Tidal disruption events occur when a star passes too close to a supermassive black hole and is torn apart by tidal forces. Approximately half of the stellar material is accreted and the rest is unbound. ASASSN-14li is a radio bright thermal TDE, and the origin of this radio emission is disputed. I will show that the late time radio properties are now consistent with background AGN activity, but that while the TDE was the dominant radio component, the radio emission was correlated with the X-ray emission. This provides evidence that thermal TDEs produce jets. It is not disputed that the relativistic TDE Swift J1644+57 produced a jet, and said jet's radio emission has now been monitored for ~10 yrs. I will present the most recent monitoring of Swift J1644+57 in the context of previously proposed jet models for the source. I will additionally discuss the up-to-date population of radio loud TDEs.
My conclusions contain a comparison of the outflows produced by these sources, and how they are analysed in different frameworks.