An extremely powerful long-lived superluminal ejection from the black hole MAXI J1820+070

(2020)

Authors:

JS Bright, RP Fender, SE Motta, DRA Williams, J Moldon, RM Plotkin, JCA Miller-Jones, I Heywood, E Tremou, R Beswick, GR Sivakoff, S Corbel, DAH Buckley, J Homan, E Gallo, AJ Tetarenko, TD Russell, DA Green, D Titterington, PA Woudt, RP Armstrong, PJ Groot, A Horesh, AJ van der Horst, EG Körding, VA McBride, A Rowlinson, RAMJ Wijers

MAGIC very large zenith angle observations of the Crab Nebula up to 100 TeV

Astronomy & Astrophysics EDP Sciences 635 (2020) a158

Authors:

VA Acciari, S Ansoldi, LA Antonelli, A Arbet Engels, D Baack, A Babić, B Banerjee, U Barres de Almeida, JA Barrio, J Becerra González, W Bednarek, L Bellizzi, E Bernardini, A Berti, J Besenrieder, W Bhattacharyya, C Bigongiari, A Biland, O Blanch, G Bonnoli, Ž Bošnjak, G Busetto, R Carosi, G Ceribella, Y Chai, A Chilingaryan, S Cikota, SM Colak, U Colin, E Colombo, JL Contreras, J Cortina, S Covino, V D’Elia, P Da Vela, F Dazzi, A De Angelis, B De Lotto, M Delfino, J Delgado, D Depaoli, F Di Pierro, L Di Venere, E Do Souto Espiñeira, D Dominis Prester, A Donini, D Dorner, M Doro, D Elsaesser, V Fallah Ramazani, A Fattorini, G Ferrara, D Fidalgo, L Foffano, MV Fonseca, L Font, C Fruck, S Fukami, RJ García López, M Garczarczyk, S Gasparyan, M Gaug, N Giglietto, F Giordano, N Godinović, D Green, D Guberman, D Hadasch, A Hahn, J Herrera, J Hoang, D Hrupec, M Hütten, T Inada, S Inoue, K Ishio, Y Iwamura, L Jouvin, D Kerszberg, H Kubo, J Kushida, A Lamastra, D Lelas, F Leone, E Lindfors, S Lombardi, F Longo, M López, R López-Coto, A López-Oramas, S Loporchio, B Machado de Oliveira Fraga, C Maggio, P Majumdar, M Makariev, M Mallamaci, G Maneva, M Manganaro, K Mannheim, L Maraschi, M Mariotti, M Martínez, D Mazin, S Mićanović, D Miceli, M Minev, JM Miranda, R Mirzoyan, E Molina, A Moralejo, D Morcuende, V Moreno, E Moretti, P Munar-Adrover, V Neustroev, C Nigro, K Nilsson, D Ninci, K Nishijima, K Noda, L Nogués, S Nozaki, S Paiano, J Palacio, M Palatiello, D Paneque, R Paoletti, JM Paredes, P Peñil, M Peresano, M Persic, PG Prada Moroni, E Prandini, I Puljak, W Rhode, M Ribó, J Rico, C Righi, A Rugliancich, L Saha, N Sahakyan, T Saito, S Sakurai, K Satalecka, K Schmidt, T Schweizer, J Sitarek, I Šnidarić, D Sobczynska, A Somero, A Stamerra, D Strom, M Strzys, Y Suda, T Surić, M Takahashi, F Tavecchio, P Temnikov, T Terzić, M Teshima, N Torres-Albà, L Tosti, V Vagelli, J van Scherpenberg, G Vanzo, M Vazquez Acosta, CF Vigorito, V Vitale, I Vovk, M Will, D Zarić

Radio and X-ray detections of GX 339-4 in quiescence using MeerKAT and Swift

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 493:1 (2020) L132-L137

Authors:

E Tremou, S Corbel, Rp Fender, Pa Woudt, Jca Miller-Jones, Sara Motta, I Heywood, Robert Armstrong, P Groot, A Horesh, Aj Van Der Horst, E Koerding, Kunal Mooley, A Rowlinson, Ramj Wijers

Abstract:

The radio-X-ray correlation that characterizes accreting black holes at all mass scales - from stellar mass black holes in binary systems to supermassive black holes powering active galactic nuclei - is one of the most important pieces of observational evidence supporting the existence of a connection between the accretion process and the generation of collimated outflows - or jets - in accreting systems. Although recent studies suggest that the correlation extends down to low luminosities, only a handful of stellar mass black holes have been clearly detected, and in general only upper limits (especially at radio wavelengths) can be obtained during quiescence. We recently obtained detections of the black hole X-ray binary (XRB) GX 339-4 in quiescence using the Meer Karoo Array Telescope (MeerKAT) radio telescope and Swift X-ray Telescope instrument on board the Neil Gehrels Swift Observatory, probing the lower end of the radio-X-ray correlation. We present the properties of accretion and of the connected generation of jets in the poorly studied low-accretion rate regime for this canonical black hole XRB system.

The 1.28 GHz MeerKAT DEEP2 Image

The Astrophysical Journal: an international review of astronomy and astronomical physics American Astronomical Society (2020)

Authors:

T Mauch, Wd Cotton, Jj Condon, Am Matthews, Td Abbott, Rm Adam, Ma Aldera, Kmb Asad, Ef Bauermeister, Tgh Bennett, H Bester, Dh Botha, Lrs Brederode, Zb Brits, Sj Buchner, Jp Burger, F Camilo, Jm Chalmers, T Cheetham, D de Villiers, MS de Villiers, Ma Dikgale-Mahlakoana, LJ du Toit, Swp Esterhuyse, Bl Fanaroff

Abstract:

We present the confusion-limited 1.28 GHz MeerKAT DEEP2 image covering one $\approx 68'$ FWHM primary beam area with $7.6''$ FWHM resolution and $0.55 \pm 0.01$ $\mu$Jy/beam rms noise. Its J2000 center position $\alpha=04^h 13^m 26.4^s$, $\delta=-80^\circ 00' 00''$ was selected to minimize artifacts caused by bright sources. We introduce the new 64-element MeerKAT array and describe commissioning observations to measure the primary beam attenuation pattern, estimate telescope pointing errors, and pinpoint $(u,v)$ coordinate errors caused by offsets in frequency or time. We constructed a 1.4 GHz differential source count by combining a power-law count fit to the DEEP2 confusion $P(D)$ distribution from $0.25$ to $10$ $\mu$Jy with counts of individual DEEP2 sources between $10$ $\mu$Jy and $2.5$ mJy. Most sources fainter than $S \sim 100$ $\mu$Jy are distant star-forming galaxies obeying the FIR/radio correlation, and sources stronger than $0.25$ $\mu$Jy account for $\sim93\%$ of the radio background produced by star-forming galaxies. For the first time, the DEEP2 source count has reached the depth needed to reveal the majority of the star formation history of the universe. A pure luminosity evolution of the 1.4 GHz local luminosity function consistent with the Madau & Dickinson (2014) model for the evolution of star-forming galaxies based on UV and infrared data underpredicts our 1.4 GHz source count in the range $-5 \lesssim \log[S(\mathrm{Jy})] \lesssim -4$.

MKT J170456.2-482100: the first transient discovered by MeerKAT

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 491:1 (2020) 560-575

Authors:

Ln Driessen, I McDonald, Dah Buckley, M Caleb, Ej Kotze, Sb Potter, Km Rajwade, A Rowlinson, Bw Stappers, E Tremou, Pa Woudt, Rp Fender, R Armstrong, P Groot, I Heywood, A Horesh, Aj van der Horst, E Koerding, Va McBride, Jca Miller-Jones, Kp Mooley, Ramj Wijers

Abstract:

© 2019 The Author(s) We report the discovery of the first transient with MeerKAT, MKT J170456.2−482100, discovered in ThunderKAT images of the low-mass X-ray binary GX339−4. MKT J170456.2−482100 is variable in the radio, reaching a maximum flux density of 0.71 ± 0.11 mJy on 2019 October 12, and is undetected in 15 out of 48 ThunderKAT epochs. MKT J170456.2−482100 is coincident with the chromospherically active K-type sub-giant TYC 8332-2529-1, and ∼ 18 yr of archival optical photometry of the star shows that it varies with a period of 21.25 ± 0.04 d. The shape and phase of the optical light curve changes over time, and we detect both X-ray and UV emission at the position of MKT J170456.2−482100, which may indicate that TYC 8332-2529-1 has large star spots. Spectroscopic analysis shows that TYC 8332-2529-1 is in a binary, and has a line-of-sight radial velocity amplitude of 43 km s−1. We also observe a spectral feature in antiphase with the K-type sub-giant, with a line-of-sight radial velocity amplitude of ∼ 12 ± 10 km s−1, whose origins cannot currently be explained. Further observations and investigation are required to determine the nature of the MKT J170456.2−482100 system.