Relativistic X-ray jets from the black hole X-ray binary MAXI J1820+070

Astrophysical Journal Letters American Astronomical Society 895:2 (2020) L31

Authors:

Mathilde Espinasse, Stephane Corbel, Philip Kaaret, Evangelia Tremou, Giulia Migliori, Richard M Plotkin, Joe Bright, John Tomsick, Anastasios Tzioumis, Robert Fender, Jerome A Orosz, Elena Gallo, Jeroen Homan, Peter G Jonker, James CA Miller-Jones, David M Russell, Sara Motta

Abstract:

The black hole MAXI J1820+070 was discovered during its 2018 outburst and was extensively monitored across the electromagnetic spectrum. Following the detection of relativistic radio jets, we obtained four Chandra X-ray observations taken between 2018 November and 2019 June, along with radio observations conducted with the Very Large Array and MeerKAT arrays. We report the discovery of X-ray sources associated with the radio jets moving at relativistic velocities with a possible deceleration at late times. The broadband spectra of the jets are consistent with synchrotron radiation from particles accelerated up to very high energies (>10 TeV) by shocks produced by the jets interacting with the interstellar medium. The minimal internal energy estimated from the X-ray observations for the jets is ~10^41 erg, significantly larger than the energy calculated from the radio flare alone, suggesting most of the energy is possibly not radiated at small scales but released through late-time interactions.

Interactions among intermediate redshift galaxies. The case of SDSSJ134420.86+663717.8

ArXiv 2005.12888 (2020)

Authors:

Persis Misquitta, Micah Bowles, Andreas Eckart, Madeleine Yttergren, Gerold Busch, Monica Valencia-S, Nastaran Fazeli

Field sources near the southern-sky calibrator PKS B1934-638: effect on spectral line observations with SKA-MID and its precursors

Monthly Notices of the Royal Astronomical Society Oxford University Press 494:4 (2020) 5018-5028

Authors:

I Heywood, E Lenc, P Serra, B Hugo, KW Bannister, ME Bell, A Chippendale, L Harvey-Smith, J Marvil, D McConnell, MA Voronkov

Abstract:

Accurate instrumental bandpass corrections are essential for the reliable interpretation of spectral lines from targeted and survey-mode observations with radio interferometers. Bandpass correction is typically performed by comparing measurements of a strong calibrator source to an assumed model, typically an isolated point source. The wide field-of-view and high sensitivity of modern interferometers means that additional sources are often detected in observations of calibrators. This can introduce errors into bandpass corrections and subsequently the target data if not properly accounted for. Focusing on the standard calibrator PKS B1934-638, we perform simulations to asses this effect by constructing a wide-field sky model. The cases of ASKAP (0.7–1.9 GHz), MeerKAT (UHF: 0.58–1.05 GHz; L-band: 0.87–1.67 GHz) and Band 2 (0.95–1.76 GHz) of SKA-MID are examined. The use of a central point source model during bandpass calibration is found to impart amplitude errors into spectra measured by the precursor instruments at the ∼0.2–0.5% level dropping to ∼0.01% in the case of SKA-MID. This manifests itself as ripples in the source spectrum, the behaviour of which is coupled to the distribution of the array baselines, the solution interval, the primary beam size, the hour-angle of the calibration scan, as well as the weights used when imaging the target. Calibration pipelines should routinely employ complete field models for standard calibrators to remove this potentially destructive contaminant from the data, a recommendation we validate by comparing our simulation results to a MeerKAT scan of PKS B1934-638, calibrated with and without our expanded sky model.

An extremely powerful long-lived superluminal ejection from the black hole MAXI J1820+070

Nature Astronomy Nature Research 4:7 (2020) 697-703

Authors:

JS Bright, RP Fender, SE Motta, DRA Williams, J Moldon, RM Plotkin, JCA Miller-Jones, I Heywood, E Tremou, R Beswick, GR Sivakoff, S Corbel, DAH Buckley, J Homan, E Gallo, AJ Tetarenko, TD Russell, DA Green, D Titterington, PA Woudt, RP Armstrong, PJ Groot, A Horesh, AJ van der Horst, EG Kording, VA McBride, A Rowlinson, RAMJ Wijers

Abstract:

Black holes in binary systems execute patterns of outburst activity where two characteristic X-ray states are associated with different behaviours observed at radio wavelengths. The hard state is associated with radio emission indicative of a continuously replenished, collimated, relativistic jet, whereas the soft state is rarely associated with radio emission, and never continuously, implying the absence of a quasi-steady jet. Here we report radio observations of the black hole transient MAXI J1820+070 during its 2018 outburst. As the black hole transitioned from the hard to soft state, we observed an isolated radio flare, which, using high-angular-resolution radio observations, we connect with the launch of bipolar relativistic ejecta. This flare occurs as the radio emission of the core jet is suppressed by a factor of over 800. We monitor the evolution of the ejecta over 200 days and to a maximum separation of 10″, during which period it remains detectable due to in situ particle acceleration. Using simultaneous radio observations sensitive to different angular scales, we calculate an accurate estimate of energy content of the approaching ejection. This energy estimate is far larger than that derived from the state transition radio flare, suggesting a systematic underestimate of jet energetics.

An extremely powerful long-lived superluminal ejection from the black hole MAXI J1820+070

(2020)

Authors:

JS Bright, RP Fender, SE Motta, DRA Williams, J Moldon, RM Plotkin, JCA Miller-Jones, I Heywood, E Tremou, R Beswick, GR Sivakoff, S Corbel, DAH Buckley, J Homan, E Gallo, AJ Tetarenko, TD Russell, DA Green, D Titterington, PA Woudt, RP Armstrong, PJ Groot, A Horesh, AJ van der Horst, EG Körding, VA McBride, A Rowlinson, RAMJ Wijers