The Observed Phase Space of Mass-loss History from Massive Stars Based on Radio Observations of a Large Supernova Sample
The Astrophysical Journal American Astronomical Society 979:2 (2025) 189
Abstract:
In this work, we study the circumstellar material (CSM) around massive stars, and the mass-loss rates depositing this CSM, using a large sample of radio observations of 325 core-collapse supernovae (CCSNe; only ~22% of them being detected). This sample comprises both archival data and our new observations of 99 CCSNe conducted with the AMI-LA radio array in a systematic approach devised to constrain the mass loss at different stages of stellar evolution. In the supernova (SN)–CSM interaction model, observing the peak of the radio emission of an SN provides the CSM density at a given radius (and therefore the mass-loss rate that deposited this CSM). On the other hand, limits on the radio emission, and/or on the peak of the radio emission provide a region in the CSM phase space that can be ruled out. Our analysis shows a discrepancy between the values of mass-loss rates derived from radio-detected and radio-nondetected SNe. Furthermore, we rule out mass-loss rates in the range of 2 × 10−6–10−4 M⊙ yr−1 for different epochs during the last 1000 yr before the explosion (assuming wind velocity of 10 km s−1) for the progenitors of ~80% of the Type II supernovae (SNe II) in our sample. In addition, we rule out the ranges of mass-loss rates suggested for red supergiants for ~50% of the progenitors of SNe II in our sample. We emphasize here that these results take a step forward in constraining mass loss in winds from a statistical point of view.IRIS: A Bayesian Approach for Image Reconstruction in Radio Interferometry with expressive Score-Based priors
ArXiv 2501.02473 (2025)
Supernova remnants on the outskirts of the Large Magellanic Cloud
Astronomy & Astrophysics EDP Sciences 693 (2025) l15
Anomaly Detection and RFI Classification with Unsupervised Learning in Narrowband Radio Technosignature Searches
ArXiv 2411.16556 (2024)
MIGHTEE: the continuum survey Data Release 1
Monthly Notices of the Royal Astronomical Society Oxford University Press 536:3 (2024) 2187-2211