Connecting X-ray absorption and 21 cm neutral hydrogen absorption in obscured radio AGN

Monthly Notices of the Royal Astronomical Society Oxford University Press 471:3 (2017) 2952-2973

Authors:

VA Moss, Allison, EM Sadler, R Urquhart, R Soria, Callingham, SJ Curran, A Musaeva, EK Mahony, M Glowacki, Farrell, KW Bannister, AP Chippendale, PG Edwards, L Harvey-Smith, Ian Heywood, AW Hotan, BT Indermuehle, E Lenc, J Marvil, D McConnell, JE Reynolds, MA Voronkov, RM Wark, MT Whiting

Abstract:

Many radio galaxies show the presence of dense and dusty gas near the active nucleus. This can be traced by both 21 cm H I absorption and soft X-ray absorption, offering new insight into the physical nature of the circumnuclear medium of these distant galaxies. To better understand this relationship, we investigate soft X-ray absorption as an indicator for the detection of associated H I absorption, as part of preparation for the First Large Absorption Survey in H I to be undertaken with the Australian Square Kilometre Array Pathfinder (ASKAP). We present the results of our pilot study using the Boolardy Engineering Test Array, a precursor to ASKAP, to search for new absorption detections in radio sources brighter than 1 Jy that also feature soft X-ray absorption. Based on this pilot survey, we detected H I absorption towards the radio source PKS 1657−298 at a redshift of z = 0.42. This source also features the highest X-ray absorption ratio of our pilot sample by a factor of 3, which is consistent with our general findings that X-ray absorption predicates the presence of dense neutral gas. By comparing the X-ray properties of active galactic nuclei with and without detection of H I absorption at radio wavelengths, we find that X-ray hardness ratio and H I absorption optical depth are correlated at a statistical significance of 4.71σ. We conclude by considering the impact of these findings on future radio and X-ray absorption studies.

The prevalence of core emission in faint radio galaxies in the SKA Simulated Skies

Monthly Notices of the Royal Astronomical Society Oxford University Press 471:1 (2017) 908-913

Authors:

IH Whittam, Matthew Jarvis, DA Green, I Heywood, JM Riley

Abstract:

Empirical simulations based on extrapolations from well-established low-frequency (<5 GHz) surveys fail to accurately model the faint, high frequency (>10 GHz) source population; they underpredict the number of observed sources by a factor of 2 below S18GHz = 10 mJy and fail to reproduce the observed spectral index distribution. We suggest that this is because the faint radio galaxies are not modelled correctly in the simulations and show that by adding a flat-spectrum core component to the Fanaroff and Riley type-I (FRI) sources in the Square Kilometre Array (SKA) Simulated Skies, the observed 15 GHz source counts can be reproduced. We find that the observations are best matched by assuming that the fraction of the total 1.4 GHz flux density that originates from the core varies with 1.4 GHz luminosity; sources with 1.4 GHz luminosities < 1025 W Hz − 1 require a core fraction ∼0.3, while the more luminous sources require a much smaller core fraction of 5 × 10−4. The low luminosity FRI sources with high core fractions that were not included in the original simulation may be equivalent to the compact ‘FR0’ sources found in recent studies.

The detection of an extremely bright fast radio burst in a phased array feed survey

Astrophysical Journal Letters IOP Publishing 841 (2017) L12

Authors:

KW Bannister, RM Shannon, J-P Macquart, C Flynn, PG Edwards, M O’Neill, S Osłowski, M Bailes, B Zackay, N Clarke, LR D’Addario, R Dodson, PJ Hall, A Jameson, D Jones, R Navarro, JT Trinh, J Allison, CS Anderson, M Bell, AP Chippendale, JD Collier, G Heald, Ian Heywood, AW Hotan, K Lee-Waddell, JP Madrid, J Marvil, D McConnell, A Popping, MA Voronkov, MT Whiting, GR Allen, DC-J Bock, DP Brodrick, F Cooray, PJ Diamond, R Ekers, RG Gough, GA Hampson, L Harvey-Smith, SG Hay, DB Hayman, CA Jackson, S Johnston, BS Koribalski, NM McClure-Griffiths, P Mirtschin, A Ng

Abstract:

We report the detection of an ultra-bright fast radio burst (FRB) from a modest, 3.4-day pilot survey with the Australian Square Kilometre Array Pathfinder. The survey was conducted in a wide-field fly's-eye configuration using the phased-array-feed technology deployed on the array to instantaneously observe an effective area of 160 deg$^2$, and achieve an exposure totaling 13200 deg$^2$ hr. We constrain the position of FRB 170107 to a region $8'\times8'$ in size (90% containment) and its fluence to be 58$\pm$6 Jy ms. The spectrum of the burst shows a sharp cutoff above 1400 MHz, which could be either due to scintillation or an intrinsic feature of the burst. This confirms the existence of an ultra-bright (>20 Jy ms) population of FRBs.

Illuminating the past 8 billion years of cold gas towards two gravitationally lensed quasars

Monthly Notices of the Royal Astronomical Society Oxford University Press 465:4 (2016) 4450-4467

Authors:

James Allison, VA Moss, J-P Macquart, SJ Curran, SW Duchesne, EK Mahony, EM Sadler, MT Whiting, KW Bannister, AP Chippendale, PG Edwards, L Harvey-Smith, Ian Heywood, BT Indermuehle, E Lenc, J Marvil, D McConnell, RJ Sault

Abstract:

Using the Boolardy Engineering Test Array of the Australian Square Kilometre Array Pathfinder (ASKAP BETA), we have carried out the first z = 0–1 survey for H I and OH absorption towards the gravitationally lensed quasars PKS B1830−211 and MG J0414+0534. Although we detected all previously reported intervening systems towards PKS B1830−211, in the case of MG J0414+0534, three systems were not found, indicating that the original identifications may have been confused with radio frequency interference. Given the sensitivity of our data, we find that our detection yield is consistent with the expected frequency of intervening H I systems estimated from previous surveys for 21-cm emission in nearby galaxies and z ∼ 3 damped Lyman α absorbers. We find spectral variability in the z = 0.886 face-on spiral galaxy towards PKS B1830−211 from observations undertaken with the Westerbork Synthesis Radio Telescope in 1997/1998 and ASKAP BETA in 2014/2015. The H I equivalent width varies by a few per cent over approximately yearly time-scales. This long-term spectral variability is correlated between the north-east and south-west images of the core, and with the total flux density of the source, implying that it is observationally coupled to intrinsic changes in the quasar. The absence of any detectable variability in the ratio of H I associated with the two core images is in stark contrast to the behaviour previously seen in the molecular lines. We therefore infer that coherent opaque H I structures in this galaxy are larger than the parsec-scale molecular clouds found at mm-wavelengths.

ATCA detections of massive molecular gas reservoirs in dusty, high-z radio galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press (2016)

Authors:

I Heywood, Y Contreras, DJB Smith, A Cooray, L Dunne, L Gómez, E Ibar, RJ Ivison, Matthew Jarvis, MJ Michałowski, DA Riechers, P van der Werf

Abstract:

Observations using the 7 mm receiver system on the Australia Telescope Compact Array have revealed large reservoirs of molecular gas in two high-redshift radio galaxies: HATLAS J090426.9+015448 (zz = 2.37) and HATLAS J140930.4+003803 (zz = 2.04). Optically the targets are very faint, and spectroscopy classifies them as narrow-line radio galaxies. In addition to harbouring an active galactic nucleus the targets share many characteristics of sub-mm galaxies. Far-infrared data from Herschel-ATLAS suggest high levels of dust (>109 M⊙) and a correspondingly large amount of obscured star formation (∼1000 M⊙ / yr). The molecular gas is traced via the J = 1 → 0 transition of 12CO, its luminosity implying total H2 masses of (1.7 ± 0.3) × 1011 and (9.5 ± 2.4) × 1010 (αCO/0.8) M⊙ in HATLAS J090426.9+015448 and HATLAS J140930.4+003803 respectively. Both galaxies exhibit molecular line emission over a broad (∼1000 km/s) velocity range, and feature double-peaked profiles. We interpret this as evidence of either a large rotating disk or an on-going merger. Gas depletion timescales are ∼100 Myr. The 1.4 GHz radio luminosities of our targets place them close to the break in the luminosity function. As such they represent ‘typical’ zz > 2 radio sources, responsible for the bulk of the energy emitted at radio wavelengths from accretion-powered sources at high redshift, and yet they rank amongst the most massive systems in terms of molecular gas and dust content. We also detect 115 GHz rest-frame continuum emission, indicating a very steep high-radio-frequency spectrum, possibly classifying the targets as compact steep spectrum objects.