A close-pair binary in a distant triple supermassive black hole system.

Nature 511:7507 (2014) 57-60

Authors:

RP Deane, Z Paragi, MJ Jarvis, M Coriat, G Bernardi, RP Fender, S Frey, I Heywood, H-R Klöckner, K Grainge, C Rumsey

Abstract:

Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.

A JVLA 10~degree^2 deep survey

(2014)

Authors:

Matthew Jarvis, Sanjay Bhatnagar, Marcus Brüggen, Chiara Ferrari, Ian Heywood, Martin Hardcastle, Eric Murphy, Russ Taylor, Oleg Smirnov, Chris Simpson, Vernesa Smolcic, Jeroen Stil, K van der Heyden

Abstract:

(Abridged)One of the fundamental challenges for astrophysics in the 21st century is finding a way to untangle the physical processes that govern galaxy formation and evolution. Given the importance and scope of this problem, the multi-wavelength astronomical community has used the past decade to build up a wealth of information over specific extragalactic deep fields to address key questions in galaxy formation and evolution. These fields generally cover at least 10square degrees to facilitate the investigation of the rarest, typically most massive, galaxies and AGN. Furthermore, such areal coverage allows the environments to be fully accounted for, thereby linking the single halo to the two-halo terms in the halo occupation distribution. Surveys at radio wavelengths have begun to lag behind those at other wavelengths, especially in this medium-deep survey tier. However, the survey speed offered by the JVLA means that we can now reach a point where we can begin to obtain commensurate data at radio wavelengths to those which already exists from the X-ray through to the far-infrared over ~10 square degrees. We therefore present the case for a 10 square degree survey to 1.5uJy at L-band in A or B Array, requiring ~4000 hours to provide census of star-formation and AGN-accretion activity in the Universe. For example, the observations will allow galaxies forming stars at 10Msolar/yr to be detected out to z~1 and luminous infrared galaxies (1000Msolar/yr to be found out to z~6. Furthermore, the survey area ensures that we will have enough cosmic volume to find these rare sources at all epochs. The bandwidth will allow us to determine the polarisation properties galaxies in the high-redshift Universe as a function of stellar mass, morphology and redshift.

Astronomy below the survey threshold in the SKA era

Proceedings of Science 9-13-June-2014 (2014)

Authors:

J Zwart, J Wall, A Karim, C Jackson, R Norris, J Condon, J Afonso, I Heywood, M Jarvis, F Navarrete, I Prandoni, E Rigby, H Rottgering, M Santos, M Sargent, N Seymour, R Taylor, T Vernstrom

Abstract:

Astronomy at or below the survey threshold has expanded significantly since the publication of the original Science with the Square Kilometer Array in 1999 and its update in 2004. The techniques in this regime may be broadly (but far from exclusively) defined as confusion or P(D) analyses (analyses of one-point statistics), and stacking, accounting for the flux-density distribution of noise-limited images co-added at the positions of objects detected/isolated in a different waveband. Here we discuss the relevant issues, present some examples of recent analyses, and consider some of the consequences for the design and use of surveys with the SKA and its pathfinders.

Morphological classification of radio sources for galaxy evolution and cosmology with the SKA

Proceedings of Science 9-13-June-2014 (2014)

Authors:

S Makhathini, OM Smirnov, MJ Jarvis, I Heywood

Abstract:

Morphologically classifying radio sources in continuum images with the SKA has the potential to address some of the key questions in cosmology and galaxy evolution. In particular, we may use different classes of radio sources as independent tracers of the dark-matter density field, and thus overcome cosmic variance in measuring large-scale structure, while on the galaxy evolution side we could measure the mechanical feedback from FRII and FRI jets. This work makes use of a MeqTrees-based simulations framework to forecast the ability of the SKA to recover true source morphologies at high redshifts. A suite of high resolution images containing realistic continuum source distributions with different morphologies (FRI, FRII, starburst galaxies) is fed through an SKA Phase 1 simulator, then analysed to determine the sensitivity limits at which the morphologies can still be distinguished. We also explore how changing the antenna distribution affects these results.

The astrophysics of star formation across cosmic time at &10 GHz with the square kilometre array

Proceedings of Science 9-13-June-2014 (2014)

Authors:

EJ Murphy, MT Sargent, RJ Beswick, C Dickinson, I Heywood, LK Hunt, MT Hyunh, M Jarvis, A Karim, M Krause, I Prandoni, N Seymour, E Schinnerer, FS Tabatabaei, J Wagg

Abstract:

In this chapter, we highlight a number of science investigations that are enabled by the inclusion of Band 5 (4:613:8 GHz) for SKA1-MID science operations, while focusing on the astrophysics of star formation over cosmic time. For studying the detailed astrophysics of star formation at highredshift, surveys at frequencies &10 GHz have the distinct advantage over traditional ∼1.4 GHz surveys as they are able to yield higher angular resolution imaging while probing higher rest frame frequencies of galaxies with increasing redshift, where emission of star-forming galaxies becomes dominated by thermal (free-free) radiation. In doing so, surveys carried out at &10 GHz provide a robust, dust-unbiased measurement of the massive star formation rate by being highly sensitive to the number of ionizing photons that are produced. To access this powerful star formation rate diagnostic requires that Band 5 be available for SKA1-MID. We additionally present a detailed science case for frequency coverage extending up to 30 GHz during full SKA2 operations, as this allows for highly diverse science while additionally providing contiguous frequency coverage between the SKA and ALMA, which will likely be the two most powerful interferometers for the coming decades. To enable this synergy, it is crucial that the dish design of the SKA be flexible enough to include the possibility of being fit with receivers operating up to 30 GHz.