Weak lensing simulations for the SKA
Proceedings of Science 9-13-June-2014 (2014)
Abstract:
Weak gravitational lensing is a very promising probe for cosmology. Measurements are traditionally made at optical wavelengths where many highly resolved galaxy images are readily available. However, the Square Kilometre Array (SKA) holds great promise for this type of measurement at radio wavelengths owing to its greatly increased sensitivity and resolution over typical radio surveys. The key to successful weak lensing experiments is in measuring the shapes of detected sources to high accuracy. In this document we describe a simulation pipeline designed to simulate radio images of the quality required for weak lensing, and will be typical of SKA observations. We provide as input, images with realistic galaxy shapes which are then simulated to produce images as they would have been observed with a given radio interferometer. We exploit this pipeline to investigate various stages of a weak lensing experiment in order to better understand the effects that may impact shape measurement. We first show how the proposed SKA1-Mid array configurations perform when we compare the (known) input and output ellipticities. We then investigate how making small changes to these array configurations impact on this input-outut ellipticity comparison. We also demonstrate how alternative configurations for SKA1-Mid that are smaller in extent, and with a faster survey speeds produce similar performance to those originally proposed. We then show how a notional SKA configuration performs in the same shape measurement challenge. Finally, we describe ongoing efforts to utilise our simulation pipeline to address questions relating to how applicable current (mostly originating from optical data) shape measurement techniques are to future radio surveys. As an alternative to such image plane techniques, we lastly discuss a shape measurement technique based on the shapelets formalism that reconstructs the source shapes directly from the visibility data. We end with a discussion of extensions to the out current simulations and concluding remarks.Ground-state 12CO emission and a resolved jet at 115 GHz (rest-frame) in the radio loud quasar 3C318
ArXiv 1308.336 (2013)
Abstract:
An analysis of 44 GHz VLA observations of the z = 1.574 radio-loud quasar 3C318 has revealed emission from the redshifted J = 1 - 0 transition of the CO molecule and spatially resolved the 6.3 kpc radio jet associated with the quasar at 115 GHz rest-frame. The continuum-subtracted line emitter is spatially offset from the quasar nucleus by 0.33" (2.82 kpc in projection). This spatial offset has a significance of >8-sigma and, together with a previously published -400 km/s velocity offset measured in the J = 2 - 1 CO line relative to the systemic redshift of the quasar, rules out a circumnuclear starburst or molecular gas ring and suggests that the quasar host galaxy is either undergoing a major merger with a gas-rich galaxy or is otherwise a highly disrupted system. If the merger scenario is correct then the event may be in its early stages, acting as the trigger for both the young radio jets in the quasar and a starburst in the merging galaxy. The total molecular gas mass in the spatially offset line emitter as measured from the ground-state CO line M_H2 = 3.7 (+/-0.4) x 10^10 (alpha_CO/0.8) M_solar. Assuming that the line-emitter can be modelled as a rotating disk, an inclination-dependent upper limit is derived for its dynamical mass M_dyn sin^2(i) < 3.2 x 10^9 M_solar, suggesting that for M_H2 to remain less than M_dyn the inclination angle must be i < 16 degrees. The far infrared and CO luminosities of 246 extragalactic systems are collated from the literature for comparison. The high molecular gas content of 3C318 is consistent with that of the general population of high redshift quasars and sub-millimetre galaxies.The preferentially magnified active nucleus in IRAS F10214+4724 - III. VLBI observations of the radio core
ArXiv 1307.6566 (2013)
Abstract:
We report 1.7 GHz Very Long Baseline Interferometry (VLBI) observations of IRAS F10214+4724, a lensed z=2.3 obscured quasar with prodigious star formation. We detect what we argue to be the obscured active nucleus with an effective angular resolution of < 50 pc at z = 2.3 . The S_{1.7} = 210 micro-Jy (9-\sigma) detection of this unresolved source is located within the HST rest-frame ultraviolet/optical arc, however, >~100 mas northward of the arc centre of curvature. This leads to a source plane inversion that places the European VLBI Network detection to within milli-arcseconds of the modelled cusp caustic, resulting in a very large magnification (\mu ~70), over an order of magnitude larger than the CO (1-0) derived magnification of a spatially resolved JVLA map, using the same lens model. We estimate the quasar bolometric luminosity from a number of independent techniques and with our X-ray modelling find evidence that the AGN may be close to Compton-thick, with an intrinsic bolometric luminosity log(L_{bol,QSO} / L_sun) = 11.34 +- 0.27 dex. We make the first black hole mass estimate of IRAS F10214+4724 and find log(M_{BH}/M_sun) = 8.36 +- 0.56 which suggests a low black hole accretion rate (\lambda = \dot{M} / \dot{M}_{Edd} ~ 3\pm^7_2 percent). We find evidence for a M_{BH}/M_{spheroid} ratio that is 1-2 orders of magnitude larger than that of submillimetre galaxies (SMGs) at z~2. At face value, this suggests IRAS F10214+4724 has undergone a different evolutionary path compared to SMGs at the same epoch. A primary result of this work is the demonstration that emission regions of differing size and position can undergo significantly different magnification boosts (> 1 dex) and therefore distort our view of high-redshift, gravitationally lensed galaxies.The closest black holes
Monthly Notices of the Royal Astronomical Society 430:3 (2013) 1538-1547
Abstract:
Starting from the assumption that there is a large population (≥108) of stellar-mass isolated black holes (IBH) distributed throughout our Galaxy, we consider the detectable signatures of accretion from the interstellar medium (ISM) that may be associated with such a population. We simulate the nearby (radius 250 pc) part of this population, corresponding to the closest ~35 000 black holes, using current best estimates of the mass distribution of stellar-mass black holes combined with two models for the velocity distribution of stellar-mass IBH which bracket likely possibilities. We distribute this population of objects appropriately within the different phases of the ISM and calculate the Bondi-Hoyle accretion rate, modified by a further dimensionless efficiency parameter λ. Assuming a simple prescription for radiatively inefficient accretion at low Eddington ratios, we calculate the X-ray luminosity of these objects, and similarly estimate the radio luminosity from relations found empirically for black holes accreting at low rates. The latter assumption depends crucially on whether or not the IBH accrete from the ISM in a manner which is axisymmetric enough to produce jets. Comparing the predicted X-ray fluxes with limits from hard X-ray surveys, we conclude that either the Bondi-Hoyle efficiency parameter λ is rather small (=0.01), the velocities of the IBH are rather high, or some combination of both. The predicted radio flux densities correspond to a population of objects which, while below current survey limits, should be detectable with the Square Kilometre Array (SKA). Converting the simulated space velocities into proper motions, we further demonstrate that such IBH could be identified as faint high proper motion radio sources in SKA surveys. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.The preferentially magnified active nucleus in IRAS F10214+4724 - I. Lens model and spatially resolved radio emission
Monthly Notices of the Royal Astronomical Society 430:1 (2013) 2-21