Detecting the B-mode Polarisation of the CMB with Clover

ArXiv e-prints (2008)

Authors:

CE North, BR Johnson, PAR Ade, MD Audley, C Baines, RA Battye, ML Brown, P Cabella, PG Calisse, AD Challinor, WD Duncan, PG Ferreira, WK Gear, D Glowacka, DJ Goldie, PK Grimes, M Halpern, V Haynes, GC Hilton, KD Irwin, ME Jones, AN Lasenby, PJ Leahy, J Leech, B Maffei, P Mauskopf, SJ Melhuish, D O Dea, SM Parsley, L Piccirillo, G Pisano, CD Reintsema, G Savini, R Sudiwala, D Sutton, AC Taylor, G Teleberg, D Titterington, V Tsaneva, C Tucker, R Watson, S Withington, G Yassin, J Zhang

Erratum: Source subtraction for the extended Very Small Array and 33-GHz source count estimates

\mnras 386 (2008) 1759-1760

Authors:

KA Cleary, AC Taylor, E Waldram, RA Battye, C Dickinson, RD Davies, RJ Davis, R Genova-Santos, K Grainge, ME Jones, R Kneissl, GG Pooley, R Rebolo, JA Rubi no-Martin, RDE Saunders, PF Scott, A Slosar, D Titterington, RA Watson

A novel heterodyne interferometer for millimetre and sub-millimetre astronomy

Ninteenth International Symposium on Space Terahertz Technology (2008) 293-293

Authors:

PK Grimes, M Brock, CM Holler, K Jacobs, ME Jones, OG King, J Leech, AC Taylor, G Yassin

Implementation of an optimized Cassegrain system for radio telescopes

Monthly Notices of the Royal Astronomical Society 384:3 (2008) 1207-1210

Authors:

CM Holler, RE Hills, ME Jones, K Grainge, T Kaneko

Abstract:

We present the antenna design for a radio interferometer, the Arcminute Microkelvin Imager, together with its beam pattern measurement. Our aim was to develop a low-cost system with high aperture efficiency and low ground spill across the frequency range 12-18 GHz. We use a modified Cassegrain system consisting of a commercially available paraboloidal primary mirror with a diameter of 3.7 m, and a shaped secondary mirror. The secondary mirror is oversized with respect to a ray optics design and has a surface that is bent towards the primary near its outer edge using a square term for the shaping. The antennas are simple to manufacture and therefore their cost is low. The design increased the antenna gain by approximately 10 per cent compared to a normal Cassegrain system while still maintaining low contamination from ground spill and using a simple design for the horn. © 2008 RAS.

Radio source calibration for the Very Small Array and other cosmic microwave background instruments at around 30 GHz

Monthly Notices of the Royal Astronomical Society 388:4 (2008) 1775-1786

Authors:

YA Hafez, RD Davies, RJ Davis, C Dickinson, ES Battistelli, F Blanco, K Cleary, T Franzen, R Genova-Santos, K Grainge, MP Hobson, ME Jones, K Lancaster, AN Lasenby, CP Padilla-Torres, JA Rubiño-Martin, R Rebolo, RDE Saunders, PF Scott, AC Taylor, D Titterington, M Tucci, RA Watson

Abstract:

Accurate calibration of data is essential for the current generation of cosmic microwave background (CMB) experiments. Using data from the Very Small Array (VSA), we describe procedures which will lead to an accuracy of 1 per cent or better for experiments such as the VSA and CBI. Particular attention is paid to the stability of the receiver systems, the quality of the site and frequent observations of reference sources. At 30 GHz the careful correction for atmospheric emission and absorption is shown to be essential for achieving 1 per cent precision. The sources for which a 1 per cent relative flux density calibration was achieved included Cas A, Cyg A, Tau A and NGC 7027 and the planets Venus, Jupiter and Saturn. A flux density, or brightness temperature in the case of the planets, was derived at 33 GHz relative to Jupiter which was adopted as the fundamental calibrator. A spectral index at ∼30 GHz is given for each. Cas A, Tau A, NGC 7027 and Venus were examined for variability. Cas A was found to be decreasing at 0.394 ± 0.019 per cent yr-1 over the period 2001 March to 2004 August. In the same period Tau A was decreasing at 0.22 ± 0.07 per cent yr-1. A survey of the published data showed that the planetary nebula NGC 7027 decreased at 0.16 ± 0.04 per cent yr-1 over the period 1967-2003. Venus showed an insignificant (1.5 ± 1.3 per cent) variation with Venusian illumination. The integrated polarization of Tau A at 33 GHz was found to be 7.8 ± 0.6 per cent at position angle =148° ± 3°. © 2008 The Authors.