Persistent Extratropical Regimes and Climate Extremes

Current Climate Change Reports Springer Nature 1:3 (2015) 115-124

Authors:

Brian Hoskins, Tim Woollings

Possible impacts of a future grand solar minimum on climate: Stratospheric and global circulation changes.

Journal of geophysical research. Atmospheres : JGR 120:18 (2015) 9043-9058

Authors:

AC Maycock, S Ineson, LJ Gray, AA Scaife, JA Anstey, M Lockwood, N Butchart, SC Hardiman, DM Mitchell, SM Osprey

Abstract:

A future decline in solar activity would not offset projected global warmingA future decline in solar activity could have larger regional effects in winterTop-down mechanism contributes to Northern Hemisphere regional response.

Constraints on southern hemisphere tropical climate change during the Little Ice Age and Younger Dryas based on glacier modeling of the Quelccaya Ice Cap, Peru

Quaternary Science Reviews Elsevier 125 (2015) 106-116

Authors:

Andrew GO Malone, Raymond Pierrehumbert, Thomas V Lowell, Meredith A Kelly, Justin S Stroup

Abstract:

© 2015 The Authors. Improving the late Quaternary paleoclimate record through climate interpretations of low-latitude glacier length changes advances our understanding of past climate change events and the mechanisms for past, present, and future climate change. Paleotemperature reconstructions at low-latitude glaciers are uniquely fruitful because they can provide both site-specific information and enhanced understanding of regional-scale variations due to the structure of the tropical atmosphere. We produce Little Ice Age (LIA) and Younger Dryas (YD) paleoclimate reconstructions for the Huancané outlet glacier of the Quelccaya Ice Cap (QIC) and low-latitude southern hemisphere regional sea surface temperatures (SSTs) using a coupled ice-flow and energy balance model. We also model the effects of long-term changes in the summit temperature and precipitiation rate and the effects of interannual climate variability on the Huancané glacier length. We find temperature to be the dominant climate driver of glacier length change. Also, we find that interannual climate variability cannot adequately explain glacier advances inferred from the geomorphic record, necessitating that these features were formed during past colder climates. To constrain our LIA reconstruction, we incorporate the QIC ice core record, finding a LIA air temperature cooling at the ice cap of between ~0.7 °C and ~1.1 °C and ~0.4 °C and regional SSTs cooling of ~0.6 °C. For the YD paleoclimate reconstructions, we propose two limits on the precipitation rate, since the ice core record does not extend into the Pleistocene: 1) the precipitation rate scales with the Clausius-Clapeyron relationship (upper limit on cooling) and 2) the precipitation rate increases by 40% (lower limit on cooling), which is an increase about twice as great as the regional increases realized in GCM simulations for the period. The first limit requires ~1.6 °C cooling in ice cap air temperatures and ~0.9 °C cooling in SSTs, and the second limit requires ~1.0 °C cooling in ice cap air temperatures and ~0.5 °C cooling in SSTs. Our temperature reconstructions are in good agreement with the magnitude and trend of GCM simulations that incorporate the forcing mechanisms hypothesized to have caused these climate change events.

Climate impact of beef: an analysis considering multiple time scales and production methods without use of global warming potentials

Environmental Research Letters Institute of Physics Publishing 10:8 (2015) 085002-085002

Authors:

Raymond Pierrehumbert, Gidon Eshel

Abstract:

An analysis of the climate impact of various forms of beef production is carried out, with a particular eye to the comparison between systems relying primarily on grasses grown in pasture (‘grass-fed’ or ‘pastured’beef) and systems involving substantial use of manufactured feed requiring significant external inputs in the form of synthetic fertilizer and mechanized agriculture (‘feedlot’beef). The climate impact is evaluated without employing metrics such asCO e 2 or global warming potentials. The analysis evaluates the impact at all time scales out to 1000 years. It is concluded that certain forms of pastured beef production have substantially lower climate impact than feedlot systems. However, pastured systems that require significant synthetic fertilization, inputs from supplemental feed, or deforestation to create pasture, have substantially greater climate impact at all time scales than the feedlot and dairy-associated systems analyzed. Even the best pastured system analyzed has enough climate impact to justify efforts to limit future growth of beef production, which in any event would be necessary if climate and other ecological concerns were met by a transition to primarily pasture-based systems. Alternate mitigation options are discussed, but barring unforseen technological breakthroughs worldwide consumption at current North American per capita rates appears incompatible with a 2 °C warming target.

Global distributions of overlapping gravity waves in HIRDLS data

Atmospheric Chemistry and Physics Copernicus GmbH 15:14 (2015) 8459-8477

Authors:

CJ Wright, SM Osprey, JC Gille

Abstract:

Abstract. Data from the High Resolution Dynamics Limb Sounder (HIRDLS) instrument on NASA's Aura satellite are used to investigate the relative numerical variability of observed gravity wave packets as a function of both horizontal and vertical wavenumber, with support from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on TIMED. We see that these distributions are dominated by large vertical and small horizontal wavenumbers, and have a similar spectral form at all heights and latitudes, albeit with important differences. By dividing our observed wavenumber distribution into particular subspecies of waves, we demonstrate that these distributions exhibit significant temporal and spatial variability, and that small-scale variability associated with particular geophysical phenomena such as the monsoon arises due to variations in specific parts of the observed spectrum. We further show that the well-known Andes/Antarctic Peninsula gravity wave hotspot during southern winter, home to some of the largest wave fluxes on the planet, is made up of relatively few waves, but with a significantly increased flux per wave due to their spectral characteristics. These results have implications for the modelling of gravity wave phenomena.