Tropical and subtropical forcing of future southern hemisphere stationary wave changes

Journal of Climate American Meteorological Society (2021)

Authors:

Matthew Patterson, Tim Woollings, Thomas J Bracegirdle

Abstract:

Stationary wave changes play a significant role in the regional climate change response in Southern Hemisphere (SH) winter. In particular, almost all CMIP5 models feature a substantial strengthening of the westerlies to the south of Australia and enhancement of the subtropical jet over the eastern Pacific in winter. In this study we investigate the mechanisms behind these changes, finding that the stationary wave response can largely be explained via reductions in the magnitude of the upper level Rossby wave source over the tropical / subtropical East Pacific. The Rossby wave source changes in this region are robust across the model ensemble and are strongly correlated with changes to low latitude circulation patterns, in particular, the projected southward migration of the Hadley cell and weakening of the Walker circulation. To confirm our mechanism of future changes, we employ a series of barotropic model experiments in which the barotropic model is given a background state identical to a particular CMIP5 model and an anomalous Rossby wave source is imposed. This simple approach is able to capture the primary features of the ensemble mean change, including the cyclonic anomaly south of Australia, and is also able to capture many of the inter-model differences. These findings will help to advance our understanding of the mechanisms underpinning SH extratropical circulation changes under climate change.

Prospect of increased disruption to the QBO in a changing climate

Geophysical Research Letters Wiley 48:15 (2021) e2021GL093058

Authors:

James A Anstey, Timothy P Banyard, Neal Butchart, Lawrence Coy, Paul A Newman, Scott Osprey, Corwin J Wright

Abstract:

The quasi-biennial oscillation (QBO) of tropical stratospheric winds was disrupted during the 2019/20 Northern Hemisphere winter. We show that this latest disruption to the regular QBO cycling was similar in many respects to that seen in 2016, but initiated by horizontal momentum transport from the Southern Hemisphere. The predictable signal associated with the QBO's quasi-regular phase progression is lost during disruptions and the oscillation reemerges after a few months significantly shifted in phase from what would be expected if it had progressed uninterrupted. We infer from an increased wave-momentum flux into equatorial latitudes seen in climate model projections that disruptions to the QBO are likely to become more common in future. Consequently, it is possible that in the future, the QBO could be a less reliable source of predictability on lead times extending out to several years than it currently is.

Teleconnections of the quasi‐biennial oscillation in a multi‐model ensemble of QBO ‐resolving models

Quarterly Journal of the Royal Meteorological Society Wiley (2021)

Authors:

James A Anstey, Isla R Simpson, Jadwiga H Richter, Hiroaki Naoe, Masakazu Taguchi, Federico Serva, Neal Butchart, Kevin Hamilton, Peter Braesicke, Andrew C Bushell, Chiara Cagnazzo, Hye‐Yeong Chun, Rolando R Garcia, Laura Holt, Yoshio Kawatani, Tobias Kerzenmacher, Young‐Ha Kim, Francois Lott, Charles McLandress, John Scinocca, Timothy N Stockdale, Stefan Versick, Shingo Watanabe, Kohei Yoshida, Seiji Yukimoto

Abstract:

The quasi‐biennial oscillation (QBO) dominates the interannual variability of the tropical stratosphere and influences other regions of the atmosphere. The high predictability of the QBO implies that its teleconnections could lead to increased skill of seasonal and decadal forecasts provided the relevant mechanisms are accurately represented in models. Here modelling and sampling uncertainties of QBO teleconnections are examined using a multi‐model ensemble of QBO‐resolving atmospheric general circulation models that have carried out a set of coordinated experiments as part of the Stratosphere‐troposphere Processes And their Role in Climate (SPARC) QBO initiative (QBOi). During Northern Hemisphere winter the stratospheric polar vortex in most of these models strengthens when the QBO near 50 hPa is westerly and weakens when it is easterly, consistent with, but weaker than, the observed response. These weak responses are likely due to model errors, such as systematically weak QBO amplitudes near 50 hPa, affecting the teleconnection. The teleconnection to the North Atlantic Oscillation is less well captured overall, but of similar strength to the observed signal in the few models that do show it. The models do not show clear evidence of a QBO teleconnection to the Northern Hemisphere Pacific‐sector subtropical jet.

3D Convection-resolving Model of Temperate, Tidally Locked Exoplanets

ASTROPHYSICAL JOURNAL 913:2 (2021) ARTN 101

Authors:

Maxence Lefevre, Martin Turbet, Raymond Pierrehumbert

Comment on 'Unintentional unfairness when applying new greenhouse gas emissions metrics at country level'

ENVIRONMENTAL RESEARCH LETTERS 16:6 (2021) ARTN 068001

Authors:

Michelle Cain, Keith Shine, David Frame, John Lynch, Adrian Macey, Ray Pierrehumbert, Myles Allen