Superconductivity in the Intercalated Graphite Compounds C6Yb and C6Ca
Bidirectional dynamic scaling in an isolated Bose gas far from equilibrium
Abstract:
Understanding and classifying nonequilibrium many-body phenomena, analogous to the classification of equilibrium states of matter into universality classes, is an outstanding problem in physics. Any many-body system, from stellar matter to financial markets, can be out of equilibrium in a myriad of ways; since many are also difficult to experiment on, it is a major goal to establish universal principles that apply to different phenomena and physical systems. At the heart of the classification of equilibrium states is the universality seen in the self-similar spatial scaling of systems close to phase transitions. Recent theoretical work, and first experimental evidence, suggest that isolated many-body systems far from equilibrium generically exhibit dynamic (spatiotemporal) self-similar scaling, akin to turbulent cascades and the Family-Vicsek scaling in classical surface growth. Here we observe bidirectional dynamic scaling in an isolated quench-cooled atomic Bose gas; as the gas thermalises and undergoes Bose-Einstein condensation, it shows self-similar net flows of particles towards the infrared (smaller momenta) and energy towards the ultraviolet (smaller lengthscales). For both infrared (IR) and ultraviolet (UV) dynamics we find that the scaling exponents are independent of the strength of the interparticle interactions that drive the thermalisation.Production and characterisation of dipolar Bose–Einstein condensates
Abstract:
Remarkable progress in the field of ultracold atoms has enabled the study of a great variety of topics in many-body quantum mechanics. The precise control of key parameters, such as interactions, temperature, density, internal and external degrees of freedom, dimensionality and the trapping geometry makes them a powerful and flexible experimental platform.
The ability to create degenerate samples of atoms which feature long-range and anisotropic dipole–dipole interactions besides the more conventional short-range and isotropic contact interactions drew considerable attention, enabling the creation of quantum droplets and a supersolid phase. This thesis reports on experimental and theoretical progress in investigating dipolar many-body quantum systems. We present an overview of our experimental apparatus and the techniques used for obtaining a Bose–Einstein condensate (BEC) of erbium. We then discuss our experimental sequence for producing a quantum degenerate gas, creating a quasi-pure BEC with 2.2 x 10^5 atoms. To optimise the production of erbium BECs, we explore density- and temperature-dependent losses in 166Er and identify six previously unreported resonant loss features. Finally, to enable studies of density-dependent phenomena, we present a theoretical investigation of dipolar condensates in box-like traps, where we explore stability and how one can use it to replicate properties of an infinite, homogeneous system to study dipolar physics. We found that traps with hard walls trigger roton-like density oscillations even if the bulk of the system is far from the roton regime, so smoother potentials are better suited to recreate homogeneous conditions. This sets the ground for future experiments, where the atoms will be loaded into a box trap to enable studies of systems which are tightly trapped in one direction but homogeneous in the other two.