How to realize a homogeneous dipolar Bose gas in the roton regime
Physical Review A American Physical Society 105:6 (2022) L061301
Abstract:
Homogeneous quantum gases open up new possibilities for studying many-body phenomena and have now been realized for a variety of systems. For gases with short-range interactions the way to make the cloud homogeneous is, predictably, to trap it in an ideal (homogeneous) box potential. We show that creating a close to homogeneous dipolar gas in the roton regime, when long-range interactions are important, actually requires trapping particles in soft-walled (inhomogeneous) box-like potentials. In particular, we numerically explore a dipolar gas confined in a pancake trap which is harmonic along the polarization axis and a cylindrically symmetric power-law potential rp radially. We find that intermediate p's maximize the proportion of the sample that can be brought close to the critical density required to reach the roton regime, whereas higher p's trigger density oscillations near the wall even when the bulk of the system is not in the roton regime. We characterize how the optimum density distribution depends on the shape of the trapping potential and find it is controlled by the trap wall steepness.Two-Dimensional Supersolid Formation in Dipolar Condensates.
Physical review letters 128:19 (2022) 195302
Abstract:
Dipolar condensates have recently been coaxed to form the long-sought supersolid phase. While one-dimensional supersolids may be prepared by triggering a roton instability, we find that such a procedure in two dimensions (2D) leads to a loss of both global phase coherence and crystalline order. Unlike in 1D, the 2D roton modes have little in common with the supersolid configuration. We develop a finite-temperature stochastic Gross-Pitaevskii theory that includes beyond-mean-field effects to explore the formation process in 2D and find that evaporative cooling directly into the supersolid phase-hence bypassing the first-order roton instability-can produce a robust supersolid in a circular trap. Importantly, the resulting supersolid is stable at the final nonzero temperature. We then experimentally produce a 2D supersolid in a near-circular trap through such an evaporative procedure. Our work provides insight into the process of supersolid formation in 2D and defines a realistic path to the formation of large two-dimensional supersolid arrays.Measuring laser beams with a neural network
Applied Optics Optica Publishing Group 61:8 (2022) 1924-1929
Abstract:
A deep neural network (NN) is used to simultaneously detect laser beams in images and measure their center coordinates, radii, and angular orientations. A dataset of images containing simulated laser beams and a dataset of images with experimental laser beams—generated using a spatial light modulator—are used to train and evaluate the NN. After training on the simulated dataset the NN achieves beam parameter root mean square errors (RMSEs) of less than 3.4% on the experimental dataset. Subsequent training on the experimental dataset causes the RMSEs to fall below 1.1%. The NN method can be used as a stand-alone measurement of the beam parameters or can compliment other beam profiling methods by providing an accurate region-of-interest.How to realise a homogeneous dipolar Bose gas in the roton regime (data)
University of Oxford (2022)