An adaptation of the CO2 slicing technique for the Infrared Atmospheric Sounding Interferometer to obtain the height of tropospheric volcanic ash clouds
Copernicus Publications (2019) 1-48
Towards more representative gridded satellite products
IEEE Geoscience and Remote Sensing Letters IEEE 16:5 (2018) 672-676
Abstract:
The most widely used satellite products are averages of data onto a regular spatiotemporal grid, known as Level 3 data. Some atmospheric variables can vary rapidly in response to changing conditions. Over the scales of Level 3 averaging, the combination of observations across different conditions may result in data that is not normally distributed, such that a simple mean is not representative. The problem is illustrated by the distribution of aerosol optical depth from different sensors and algorithms. A simple statistical technique is proposed to better convey the diversity of satellite observations to users whereby a multimodal log-normal distribution is fit to the distribution of data observed within each grid cell. Allowing multiple modes within each cell is shown to improve the agreement between satellite products by highlighting regions of significant variability and isolating systematic differences between instruments.A new parameterization of volcanic ash complex refractive index based on NBO/T and SiO2 content
Journal of Geophysical Research: Atmospheres Wiley 124:3 (2018) 1779-1797
Abstract:
Radiative transfer models used in remote sensing and hazard assessment of volcanic ash require knowledge of ash optical parameters. Here, we characterise the bulk and glass compositions of a representative suite of volcanic ash samples with known complex refractive indices (n + ik: where n is the real and k is the imaginary part). Using a linear regression model, we develop a new parameterization allowing the complex refractive index of volcanic ash to be estimated from ash SiO2 content or ratio of non-bridging oxygens to tetrahedrally-coordinated cations (NBO/T). At visible wavelengths, n correlates better with bulk than glass composition (both SiO2 and NBO/T), and k correlates better with SiO2 content than NBO/T. Over a broader spectral range (0.4–19 μm), bulk correlates better than glass composition, and NBO/T generally correlates better than SiO2 content for both parts of the refractive index. In order to understand the impacts of our new parameterization on satellite retrievals, we compared IASI satellite (wavelengths 3.62–15.5 μm) mass loading retrievals using our new approach with retrievals that assumed a generic (Eyjafjallajökull) ash refractive index. There are significant differences in mass loading using our calculated indices specific to ash type rather than a generic index. Where mass loadings increase, there is often improvement in retrieval quality (corresponding to cost function decrease). This new parameterization of refractive index variation with ash composition will help to improve remote sensing retrievals for the rapid identification of ash and quantitative analysis of mass loadings from satellite data on operational timescales.Comparison of mean age of air in five reanalyses using the BASCOE transport model
Atmospheric Chemistry and Physics Copernicus Publications 18:19 (2018) 14715-14735
Finding Ocean States That Are Consistent with Observations from a Perturbed Physics Parameter Ensemble
Journal of Climate American Meteorological Society (2018)