Radio spectral properties of star-forming galaxies in the MIGHTEE-COSMOS field and their impact on the far-infrared-radio correlation
Monthly Notices of the Royal Astronomical Society Oxford University Press 507:256 (2021) 2643-2658
Abstract:
We study the radio spectral properties of 2094 star-forming galaxies (SFGs) by combining our early science data from the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) survey with VLA, GMRT radio data, and rich ancillary data in the COSMOS field. These SFGs are selected at VLA 3 GHz, and their flux densities from MeerKAT 1.3 GHz and GMRT 325 MHz imaging data are extracted using the ‘superdeblending’ technique. The median radio spectral index is α3GHz1.3GHz=−0.80±0.01 without significant variation across the rest-frame frequencies ∼1.3–10 GHz, indicating radio spectra dominated by synchrotron radiation. On average, the radio spectrum at observer-frame 1.3–3 GHz slightly steepens with increasing stellar mass with a linear fitted slope of β = −0.08 ± 0.01, which could be explained by age-related synchrotron losses. Due to the sensitivity of GMRT 325 MHz data, we apply a further flux density cut at 3 GHz (S3GHz≥50μJy) and obtain a sample of 166 SFGs with measured flux densities at 325 MHz, 1.3 GHz, and 3 GHz. On average, the radio spectrum of SFGs flattens at low frequency with the median spectral indices of α1.3GHz325MHz=−0.59+0.02−0.03 and α3.0GHz1.3GHz=−0.74+0.01−0.02. At low frequency, our stacking analyses show that the radio spectrum also slightly steepens with increasing stellar mass. By comparing the far-infrared-radio correlations of SFGs based on different radio spectral indices, we find that adopting α3GHz1.3GHz for k-corrections will significantly underestimate the infrared-to-radio luminosity ratio (qIR) for >17 per cent of the SFGs with measured flux density at the three radio frequencies in our sample, because their radio spectra are significantly flatter at low frequency (0.33–1.3 GHz).Radio spectral properties of star-forming galaxies in the MIGHTEE-COSMOS field and their impact on the far-infrared-radio correlation
(2021)
Euclid preparation: I. The Euclid Wide Survey
(2021)
Model-independent constraints on clustering and growth of cosmic structures from BOSS DR12 galaxies in harmonic space
ArXiv preprint. 14 pages, 8 figures, 3 tables
Abstract:
We present a new, model-independent measurement of the clustering amplitude of galaxies and the growth of cosmic large-scale structures from the Baryon Oscillation Spectroscopic Survey (BOSS) 12th data release (DR12). This is achieved by generalising harmonic-space power spectra for galaxy clustering to measure separately the magnitudes of the density and of the redshift-space distortion terms, which are respectively related to the clustering amplitude, bσ8(z), and the growth, fσ8(z). We adopt a tomographic approach with 15 redshift bins in the range z∈[0.15,0.67]. We restrict our analysis to strictly linear scales, implementing a redshift-dependent maximum multipole for each of the tomographic bins. Thus, we obtain 30 data points in total, 15 for each of the quantities bσ8(z) and fσ8(z). The measurements do not appear to suffer from any apparent systematic effect and show excellent agreement with the theoretical prediction from a concordance cosmology as from the Planck satellite. Our results also agree with previous analyses by the BOSS collaboration. Although each single datum has, in general, a larger error bar than that obtained in configuration- or Fourier-space analyses, our study provides the community with a larger number of tomographic data points that allow for a complementary tracking in redshift of the evolution of fundamental cosmological quantities.
Euclid preparation: IX. EuclidEmulator2 – power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 505:2 (2021) 2840-2869