Evidence for a truncated accretion disc in the low-luminosity Seyfert galaxy, NGC 7213?
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 408:1 (2010) 551-564
The absorption-dominated model for the X-ray spectra of type I active galaxies: MCG-6-30-15
Monthly Notices of the Royal Astronomical Society: Letters 399:1 (2009)
Abstract:
MCG-6-30-15 is the archetypal example of a type I active galaxy showing broad 'red-wing' emission in its X-ray spectrum at energies below the 6.4 keV Fe Kα emission line and a continuum excess above 20 keV. Miller et al. showed that these spectral features could be caused by clumpy absorbing material, but Reynolds et al. have argued that the observed Fe Kα line luminosity is inconsistent with this explanation unless the global covering factor of the absorber(s) is very low. However, the Reynolds et al. calculation effectively considers the only source of opacity to be the Fe K bound-free transition and neglects the opacity at the line energy: correction to realistic opacity decreases the predicted line flux by a large factor. We also discuss the interpretation of the covering factor and the possible effect of occultation by the accretion disc. Finally, we consider a model for MCG-6-30-15 dominated by clumpy absorption, which is consistent with a global covering factor of 0.45, although models that include the effects of Compton scattering are required to reach a full understanding. Variations in covering fraction may dominate the observed X-ray spectral variability. © 2009 The Authors. Journal compilation © 2009 RAS.X-ray absorption and reflection in active galactic nuclei
Astronomy and Astrophysics Review 17:1 (2009) 47-104
Abstract:
X-ray spectroscopy offers an opportunity to study the complex mixture of emitting and absorbing components in the circumnuclear regions of active galactic nuclei (AGN), and to learn about the accretion process that fuels AGN and the feedback of material to their host galaxies. We describe the spectral signatures that may be studied and review the X-ray spectra and spectral variability of active galaxies, concentrating on progress from recent Chandra, XMM-Newton and Suzaku data for local type 1 AGN. We describe the evidence for absorption covering a wide range of column densities, ionization and dynamics, and discuss the growing evidence for partial-covering absorption from data at energies ≳ 10 keV. Such absorption can also explain the observed X-ray spectral curvature and variability in AGN at lower energies and is likely an important factor in shaping the observed properties of this class of source. Consideration of self-consistent models for local AGN indicates that X-ray spectra likely comprise a combination of absorption and reflection effects from material originating within a few light days of the black hole as well as on larger scales. It is likely that AGN X-ray spectra may be strongly affected by the presence of disk-wind outflows that are expected in systems with high accretion rates, and we describe models that attempt to predict the effects of radiative transfer through such winds, and discuss the prospects for new data to test and address these ideas. © 2009 Springer-Verlag.A correlation between the spectral and timing properties of AGN
Astronomy and Astrophysics 494:3 (2009) 905-912
Abstract:
Context. We present the results from a combined study of the average X-ray spectral and timing properties of 14 nearby AGN. Aims. We investigate whether a "spectral-timing" AGN correlation exists, similar to the one observed in Cyg X-1, compare the two correlations, and constrain possible physical mechanisms responsible for the X-ray emission in compact, accreting objects. Methods. For 11 of the sources in the sample, we used all the available data from the RXTE archive, which were taken until the end of 2006. There are 7795 RXTE observations in total for these AGN, obtained over a period of ∼7-11 years. We extracted their 3-20 keV spectra and fitted them with a simple power-law model, modified by the presence of a Gaussian line (at 6.4 keV) and cold absorption, when necessary. We used the best-fit slopes to construct their sample distribution function, and we used the median of the distribution, and the mean of the best-fit slopes, which are above the 80th percentile of the distributions, to estimate the mean spectral slope of the objects. The latter estimate is more appropriate in the case when the energy spectra of the sources are significantly affected by absorption and/or reflection effects. We also used results from the literature to estimate the average spectral slope of the three remaining objects. Results. The AGN average spectral slopes are not correlated either with the black hole mass or the characteristic frequencies that were detected in the power spectra. They are positively correlated, though, with the characteristic frequency when normalised to the sources black hole mass. This correlation is similar to the spectral-timing correlation that has been observed in Cyg X-1, but not the same. Conclusions. The AGN spectral-timing correlation can be explained if we assume that the accretion rate determines both the average spectral slope and the characteristic time scales in these systems. The spectrum should steepen and the characteristic frequency should increase, proportionally, with increasing accretion rate. We also provide a quantitative expression between spectral slope and accretion rate. Thermal Comptonisation models are broadly consistent with our result, and can also explain the difference between the spectral-timing correlations in Cyg X-1 and AGN, but only if the ratio of the soft photons' luminosity to the power injected to the hot corona is proportionally related to the accretion rate. © ESO 2009.A compton-thick wind in the high-luminosity quasar, PDS 456
Astrophysical Journal 701:1 (2009) 493-507