The cosmic dawn and epoch of reionization with the square kilometre array

Proceedings of Science 9-13-June-2014 (2014)

Authors:

LVE Koopmans, J Pritchard, G Mellema, F Abdalla, J Aguirre, K Ahn, R Barkana, I Van Bemmel, G Bernardi, A Bonaldi, F Briggs, AG De Bruyn, TC Chang, E Chapman, X Chen, B Ciardi, KK Datta, P Dayal, A Ferrara, A Fialkov, F Fiore, K Ichiki, IT Illiev, S Inoue, V Jelić, M Jones, J Lazio, U Maio, S Majumdar, KJ Mack, A Mesinger, MF Morales, A Parsons, UL Pen, M Santos, R Schneider, B Semelin, RS De Souza, R Subrahmanyan, T Takeuchi, C Trott, H Vedantham, J Wagg, R Webster, S Wyithe

Abstract:

Concerted effort is currently ongoing to open up the Epoch of Reionization (z ∼15-6) for studies with IR and radio telescopes. Whereas IR detections have been made of sources (Lyman-a emitters, quasars and drop-outs) in this redshift regime in relatively small fields of view, no direct detection of neutral hydrogen, via the redshifted 21-cm line, has yet been established. Such a direct detection is expected in the coming years, with ongoing surveys, and could open up the entire universe from z ∼6-200 for astrophysical and cosmological studies, opening not only the Epoch of Reionization, but also its preceding Cosmic Dawn (z ∼30-15) and possibly even the later phases of the Dark Ages (z ∼200-30). All currently ongoing experiments attempt statistical detections of the 21-cm signal during the Epoch of Reionization, with limited signal-to-noise. Direct imaging, except maybe on the largest (degree) scales at lower redshifts, as well as higher redshifts will remain out of reach. The Square Kilometre Array (SKA) will revolutionize the field, allowing direct imaging of neutral hydrogen from scales of arc-minutes to degrees over most of the redshift range z ∼6-28 with SKA1-LOW, and possibly even higher redshifts with the SKA2-LOW. In this SKA will be unique, and in parallel provide enormous potential of synergy with other upcoming facilities (e.g. JWST). In this chapter we summarize the physics of 21-cm emission, the different phases the universe is thought to go through, and the observables that the SKA can probe, referring where needed to detailed chapters in this volume. This is done within the framework of the current SKA1 baseline design and a nominal CD/EoR straw-man survey, consisting of a shallow, medium-deep and deep survey, the latter probing down to ∼1mK brightness temperature on arc-minute scales at the end of reionization. Possible minor modifications to the design of SKA1 and the upgrade to SKA2 are discussed, in addition to science that could be done already during roll-out when SKA1 still has limited capabilities and/or core collecting area.

The James Clerk Maxwell Telescope Nearby Galaxies Legacy Survey - IX. 12CO J = 3→2 observations of NGC 2976 and NGC 3351

Monthly Notices of the Royal Astronomical Society 436:1 (2013) 921-933

Authors:

BK Tan, J Leech, D Rigopoulou, BE Warren, CD Wilson, D Attewell, M Azimlu, GJ Bendo, HM Butner, E Brinks, P Chanial, DL Clements, V Heesen, F Israel, JH Knapen, HE Matthews, AMJ Mortier, S Mühle, JR Sánchez-Gallego, RPJ Tilanus, A Usero, P Van der Werf, M Zhu

Abstract:

We present 12CO J = 3→2 maps of NGC 2976 and NGC 3351 obtained with the James Clerk Maxwell Telescope (JCMT), both early targets of the JCMT Nearby Galaxy Legacy Survey (NGLS). We combine the present observations with 12CO J = 1→0 data and find that the computed 12CO J = 3→2 to 12CO J = 1→0 line ratio (R31) agrees with values measured in other NGLS field galaxies. We compute the MH2 value and find that it is robust against the value of R31 used. Using HI data from The HI Nearby Galaxy Survey, we find a tight correlation between the surface density of H2 and star formation rate density for NGC 3351 when 12CO J = 3→2 data are used. Finally, we compare the 12CO J = 3→2 intensity with the polycyclic aromatic hydrocarbon (PAH) 8 μm surface brightness and find a good correlation in the high surface brightness regions. We extend this study to include all 25 Spitzer Infrared Nearby Galaxies Survey galaxies within the NGLS sample and find a tight correlation at large spatial scales. We suggest that both PAH 8 μm and 12CO J = 3→2 are likely to originate in regions of active star formation. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Increased SKA-Low Science Capability through Extended Frequency Coverage

SKA Organisation (2013) 149

Authors:

DC Price, D Sinclair, J Hickish, ME Jones

Optimal partitioning of SKA-Low Antenna Elements

SKA Orgainisation (2013) 150

Authors:

DC Price, J Hickish, D Sinclair, ME Jones

Easy to fabricate feeds for astronomical receivers

2013 International Workshop on Antenna Technology, iWAT 2013 (2013) 15-18

Authors:

G Yassin, J Leech, BK Tan, P Kittara

Abstract:

Modern ground-based radio-telescopes have stringent requirements on the receiver's feed-horn performance. These include a bandwidth covering a full atmospheric window from good sites (∼ 30%), low cross polarization and high beam circularity. In addition the unprecedented sensitivity required by recent proposed experiments requires large format focal plane arrays consisting of a large number of high performance feeds. While these feeds are straightforward to fabricate at microwave frequencies, the tight tolerances required in the THz region makes the realization of a large format array both expensive and time consuming. In this paper we describe feed designs that can be fabricated cheaply and rapidly without compromising the science requirements within the operating bandwidth. We present simulated and measured far-field beam patterns showing low sidelobe levels, good beam circularity and low cross-polarization levels over a fractional bandwidth of 20%. Having demonstrated the efficacy of our horn designs and fabricating technique experimentally, we have designed, fabricated and tested a prototype focal plane array of 37 hexagonally close packed horns milled in a single block of aluminum. Experimental testing of the radiation patterns of the array feeds demonstrated that they were essentially identical to the patterns of the feeds fabricated individually and that cross coupling between adjacent feeds was negligible. © 2013 IEEE.