Radio source calibration for the Very Small Array and other cosmic microwave background instruments at around 30 GHz

Monthly Notices of the Royal Astronomical Society 388:4 (2008) 1775-1786

Authors:

YA Hafez, RD Davies, RJ Davis, C Dickinson, ES Battistelli, F Blanco, K Cleary, T Franzen, R Genova-Santos, K Grainge, MP Hobson, ME Jones, K Lancaster, AN Lasenby, CP Padilla-Torres, JA Rubiño-Martin, R Rebolo, RDE Saunders, PF Scott, AC Taylor, D Titterington, M Tucci, RA Watson

Abstract:

Accurate calibration of data is essential for the current generation of cosmic microwave background (CMB) experiments. Using data from the Very Small Array (VSA), we describe procedures which will lead to an accuracy of 1 per cent or better for experiments such as the VSA and CBI. Particular attention is paid to the stability of the receiver systems, the quality of the site and frequent observations of reference sources. At 30 GHz the careful correction for atmospheric emission and absorption is shown to be essential for achieving 1 per cent precision. The sources for which a 1 per cent relative flux density calibration was achieved included Cas A, Cyg A, Tau A and NGC 7027 and the planets Venus, Jupiter and Saturn. A flux density, or brightness temperature in the case of the planets, was derived at 33 GHz relative to Jupiter which was adopted as the fundamental calibrator. A spectral index at ∼30 GHz is given for each. Cas A, Tau A, NGC 7027 and Venus were examined for variability. Cas A was found to be decreasing at 0.394 ± 0.019 per cent yr-1 over the period 2001 March to 2004 August. In the same period Tau A was decreasing at 0.22 ± 0.07 per cent yr-1. A survey of the published data showed that the planetary nebula NGC 7027 decreased at 0.16 ± 0.04 per cent yr-1 over the period 1967-2003. Venus showed an insignificant (1.5 ± 1.3 per cent) variation with Venusian illumination. The integrated polarization of Tau A at 33 GHz was found to be 7.8 ± 0.6 per cent at position angle =148° ± 3°. © 2008 The Authors.

The Arcminute Microkelvin Imager★

Monthly Notices of the Royal Astronomical Society Blackwell Publishing Ltd 391 (2008) 4

Authors:

JTL Zwart, RW Barker, P Biddulph, D Bly, RC Boysen, AR Brown, C Clementson, M Crofts, TL Culverhouse, J Czeres, RJ Dace, ML Davies, R D Alessandro, P Doherty, K Duggan, JA Ely, M Felvus, F Feroz, W Flynn, TMO Franzen, J Geisbüsch, R Génova-Santos, KJB Grainge, WF Grainger, D Hammett, RE Hills, MP Hobson, CM Holler, N Hurley-Walker, R Jilley, ME Jones, T Kaneko, R Kneissl, K Lancaster, AN Lasenby, PJ Marshall, F Newton, O Norris, I Northrop, DM Odell, G Petencin, JC Pober, GG Pooley, MW Pospieszalski, V Quy, C Rodríguez-Gonzálvez, RDE Saunders, AMM Scaife, J Schofield, PF Scott, C Shaw, TW Shimwell, H Smith, AC Taylor, DJ Titterington, M Velić, EM Waldram, S West, BA Wood, G Yassin

A high performance horn for large format focal plane arrays

Proceedings of the Eighteenth International Symposium on Space Terahertz Technology 2007, ISSTT 2007 (2007) 199-210

Authors:

G Yassin, P Kittara, A Jiralucksanawong, S Wangsuya, J Leech, M Jones

Abstract:

We describe the design and performance of an easy to machine horn which exhibits excellent beam circularity and low cross polarisation over a relatively large bandwidth. No grooves are machined into the horn walls but, alternatively, flare angle discontinuities are generated along the horn profile. In other words, the horns will have several flare angles or sections instead of one. For example, if the horn consists of two flare angles, it could then be considered as a conventional Potter horn. As can be seen below, even with this simple design, excellent radiation patterns can be obtained over 15% bandwidth. The bandwidth could be further increased by adding more subsections with 30% bandwidth obtained when the profile is based on 4 sections. The operation of the horn is based on generating higher order modes at the correct amplitude ratio and phase with respect to the incident TE11 mode in the circular waveguide, which is achieved by accurate determination of the magnitude and location of the flare steps. This in turn yields a field distribution at the horn aperture that has low sidelobes and cross polarization in the radiation pattern. A key component in the design package is the optimization software that searches for the correct magnitude and location of the flare discontinuities. We have generated a software package based on the combination of modal matching, genetic algorithm (GA) and simplex optimization. The genetic code is first used to locate the proximity of the global minimum. The set of parameters obtained are then used as a starting point for the simplex method, which refines the parameters to the required accuracy. We shall illustrate our method by showing radiation patterns using two and three step discontinuities and also patterns for a spline profiled horn based on work by other investigators who used different optimization techniques.

Clover-measuring the CMB B-mode polarisation

Proceedings of the Eighteenth International Symposium on Space Terahertz Technology 2007, ISSTT 2007 (2007) 238-243

Authors:

CE North, PAR Ade, MD Audley, C Baines, RA Battye, ML Brown, P Cabella, PG Calisse, AD Challinor, WD Duncan, P Ferreira, WK Gear, D Glowacka, DJ Goldie, PK Grimes, M Halpern, V Haynes, GC Hilton, KD Irwin, BR Johnson, ME Jones, AN Lasenby, PJ Leahy, J Leech, S Lewis, B Maffei, L Martinis, P Mauskopf, SJ Melhuish, D O'Dea, SM Parsley, L Piccirillo, G Pisano, CD Reintsema, G Savini, R Sudiwala, D Sutton, AC Taylor, G Teleberg, D Titterington, V Tsaneva, C Tucker, R Watson, S Withington, G Yassin, J Zhang

Abstract:

We describe the objectives, design and predicted performance of Clover, a fully-funded, UK-led experiment to measure the B-mode polarisation of the Cosmic Microwave Background (CMB). Three individual telescopes will operate at 97, 150 and 225 GHz, each populated by up to 256 horns. The detectors, TES bolometers, are limited by unavoidable photon noise, and coupled to an optical design which gives very low systematic errors, particularly in cross-polarisation. The telescopes will sit on three-axis mounts on a site in the Atacama Desert. The angular resolution of around 8 ́ and sky coverage of around 1000 deg2 provide multipole coverage of 20<ℓ<1000. Combined with the high sensitivity, this should allow the B-mode signal to be measured (or constrained) down to a level corresponding to a tensor-to-scalar ratio of r = 0.01, providing the emission from polarised foregrounds can be subtracted. This in turn will allow constraints to be placed on the energy scale of inflation, providing an unprecedented insight into the early history of the Universe.

The design of potter horns for THz applications using a genetic algorithm

International Journal of Infrared and Millimeter Waves 28:12 (2007) 1103-1114

Authors:

P Kittara, A Jiralucksanawong, G Yassin, S Wangsuya, J Leech

Abstract:

We describe the design and performance of Potter horns at millimetre and submillimetre wavelength employing a novel software package that we have developed, using Genetic Algorithm. The horn is easy to fabricate and exhibits excellent beam circularity and low cross polarization over a 15% bandwidth which is sufficient for many applications. Excitation of the required higher order modes is done by either a step or a flare discontinuity at the horn throat. In each case we provide design curves that give the optimum parameters of the horn geometry as a function of frequency and beamwidth. The range of values provided covers the parameters required for the design of horns for telescope feeds and various other instruments. The design curves show clearly that the flare-step performance is superior to the traditional groove-step Potter horn. The simulations for designing these horns were carried out at millimetre and submillimetre wavelengths but the results can be scaled to lower or higher frequencies. A key component in the design method is the optimization software that searches for the correct magnitude and location of the flare discontinuities. We have developed a software package based on the combination of modal matching, a genetic algorithm (GA) and downhill simplex optimization. The genetic code is first used to locate the proximity of the global minimum. The set of parameters obtained are then used as a starting point for the simplex method, which refines the parameters to the required accuracy. © 2007 Springer Science+Business Media, LLC.