All-sky Search for Transient Astrophysical Neutrino Emission with 10 Years of IceCube Cascade Events
Abstract:
Neutrino flares in the sky are searched for in data collected by IceCube between 2011 and 2021 May. This data set contains cascade-like events originating from charged-current electron neutrino and tau neutrino interactions and all-flavor neutral-current interactions. IceCube’s previous all-sky searches for neutrino flares used data sets consisting of track-like events originating from charged-current muon neutrino interactions. The cascade data set is statistically independent of the track data sets, and while inferior in angular resolution, the low-background nature makes it competitive and complementary to previous searches. No statistically significant flare of neutrino emission was observed in an all-sky scan. Upper limits are calculated on neutrino flares of varying duration from 1 hr to 100 days. Furthermore, constraints on the contribution of these flares to the diffuse astrophysical neutrino flux are presented, showing that multiple unresolved transient sources may contribute to the diffuse astrophysical neutrino flux.A search for an eV-scale sterile neutrino using improved high-energy $ν_μ$ event reconstruction in IceCube
Methods and stability tests associated with the sterile neutrino search using improved high-energy $ν_μ$ event reconstruction in IceCube
ATLAS Run 2 searches for electroweak production of supersymmetric particles interpreted within the pMSSM
Abstract:
A summary of the constraints from searches performed by the ATLAS collaboration for the electroweak production of charginos and neutralinos is presented. Results from eight separate ATLAS searches are considered, each using 140 fb−1 of proton-proton data at a centre-of-mass energy of √𝑠 = 13 TeV collected at the Large Hadron Collider during its second data-taking run. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, where R-parity conservation is assumed and the lightest supersymmetric particle is assumed to be the lightest neutralino. Constraints from previous electroweak, flavour and dark matter related measurements are also considered. The results are presented in terms of constraints on supersymmetric particle masses and are compared with limits from simplified models. Also shown is the impact of ATLAS searches on parameters such as the dark matter relic density and the spin-dependent and spin-independent scattering cross-sections targeted by direct dark matter detection experiments. The Higgs boson and Z boson ‘funnel regions’, where a low-mass neutralino would not oversaturate the dark matter relic abundance, are almost completely excluded by the considered constraints. Example spectra for non-excluded supersymmetric models with light charginos and neutralinos are also presented.