Observation of seven astrophysical tau neutrino candidates with IceCube
Physical Review Letters American Physical Society 132:15 (2024) 151001
Abstract:
We report on a measurement of astrophysical tau neutrinos with 9.7 yr of IceCube data. Using convolutional neural networks trained on images derived from simulated events, seven candidate ντ events were found with visible energies ranging from roughly 20 TeV to 1 PeV and a median expected parent ντ energy of about 200 TeV. Considering backgrounds from astrophysical and atmospheric neutrinos, and muons from π±/K± decays in atmospheric air showers, we obtain a total estimated background of about 0.5 events, dominated by non-ντ astrophysical neutrinos. Thus, we rule out the absence of astrophysical ντ at the 5σ level. The measured astrophysical ντ flux is consistent with expectations based on previously published IceCube astrophysical neutrino flux measurements and neutrino oscillations.Search for 10–1000 GeV Neutrinos from Gamma-Ray Bursts with IceCube
The Astrophysical Journal American Astronomical Society 964:2 (2024) 126
Search for decoherence from quantum gravity with atmospheric neutrinos
Nature Physics Springer Nature 20:6 (2024) 913-920
Abstract:
Neutrino oscillations at the highest energies and longest baselines can be used to study the structure of spacetime and test the fundamental principles of quantum mechanics. If the metric of spacetime has a quantum mechanical description, its fluctuations at the Planck scale are expected to introduce non-unitary effects that are inconsistent with the standard unitary time evolution of quantum mechanics. Neutrinos interacting with such fluctuations would lose their quantum coherence, deviating from the expected oscillatory flavour composition at long distances and high energies. Here we use atmospheric neutrinos detected by the IceCube South Pole Neutrino Observatory in the energy range of 0.5–10.0 TeV to search for coherence loss in neutrino propagation. We find no evidence of anomalous neutrino decoherence and determine limits on neutrino–quantum gravity interactions. The constraint on the effective decoherence strength parameter within an energy-independent decoherence model improves on previous limits by a factor of 30. For decoherence effects scaling as E2, our limits are advanced by more than six orders of magnitude beyond past measurements compared with the state of the art.A precise measurement of the Z -boson double-differential transverse momentum and rapidity distributions in the full phase space of the decay leptons with the ATLAS experiment at s = 8 TeV
The European Physical Journal C SpringerOpen 84:3 (2024) 315
Abstract:
This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. This is in contrast to the many previous precise unfolded measurements performed in the fiducial phase space of the decay leptons. The measurement is obtained from proton–proton collision data collected by the ATLAS experiment in 2012 at s=8 TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb-1. The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum pT and rapidity y are measured in the pole region, defined as 80Dark Matter Line Searches with the Cherenkov Telescope Array
(2024)