Nine-hour X-ray quasi-periodic eruptions from a low-mass black hole galactic nucleus
Nature Nature Research 573 (2019) 381-384
Abstract:
In the past two decades, high-amplitude electromagnetic outbursts have been detected from dormant galaxies and often attributed to the tidal disruption of a star by the central black hole1,2. X-ray emission from the Seyfert 2 galaxy GSN 069 (2MASX J01190869-3411305) at a redshift of z = 0.018 was first detected in July 2010 and implies an X-ray brightening by a factor of more than 240 over ROSAT observations performed 16 years earlier3,4. The emission has smoothly decayed over time since 2010, possibly indicating a long-lived tidal disruption event5. The X-ray spectrum is ultra-soft and can be described by accretion disk emission with luminosity proportional to the fourth power of the disk temperature during long-term evolution. Here we report observations of quasi-periodic X-ray eruptions from the nucleus of GSN 069 over the course of 54 days, from December 2018 onwards. During these eruptions, the X-ray count rate increases by up to two orders of magnitude with an event duration of just over an hour and a recurrence time of about nine hours. These eruptions are associated with fast spectral transitions between a cold and a warm phase in the accretion flow around a low-mass black hole (of approximately 4 × 105 solar masses) with peak X-ray luminosity of about 5 × 1042 erg per second. The warm phase has kT (where T is the temperature and k is the Boltzmann constant) of about 120 electronvolts, reminiscent of the typical soft-X-ray excess, an almost universal thermal-like feature in the X-ray spectra of luminous active nuclei6,7,8. If the observed properties are not unique to GSN 069, and assuming standard scaling of timescales with black hole mass and accretion properties, typical active galactic nuclei with higher-mass black holes can be expected to exhibit high-amplitude optical to X-ray variability on timescales as short as months or years9.Nine-hour X-ray quasi-periodic eruptions from a low-mass black hole galactic nucleus
(2019)
Current constraints from cosmogenic neutrinos on the fraction of protons in UHECRs
Proceedings of Science Sissa Medialab 358 (2019) 1025
Abstract:
Cosmogenic neutrinos are created when ultra-high-energy cosmic rays (UHECRs) interact with extragalactic photon backgrounds. In general, the expected flux of these cosmogenic neutrinos depends on multiple parameters, describing the sources and propagation of UHECRs. In our recent paper (van Vliet et al., 2019), we show that a `sweet spot` occurs at a neutrino energy of Eν∼1 EeV. At that energy the flux mainly depends on two parameters, the source evolution and the fraction of protons in UHECRs at Earth for Ep≳30 EeV. Therefore, with current upper limits on the cosmogenic neutrino flux at Eν∼1 EeV and assuming a certain source class, a constraint on the composition of UHECRs can be obtained. This constraint is independent of hadronic interaction models and indicates that the combination of a large proton fraction and a strong source evolution is disfavored. Upcoming neutrino experiments will be able to constrain the fraction of protons in UHECRs even further, and for any realistic model for the evolution of UHECR sources.The impact of plasma instabilities on the spectra of TeV blazars
Monthly Notices of the Royal Astronomical Society Oxford University Press 489:3 (2019) 3836-3849
Abstract:
Relativistic jets from blazars are known to be sources of very high energy gamma rays (VHEGRs). During their propagation in the intergalactic space, VHEGRs interact with pervasive cosmological photon fields such as the extragalactic background light (EBL) and the cosmic microwave background (CMB), producing electron–positron pairs. These pairs can upscatter CMB/EBL photons to high energies via inverse Compton (IC) scattering, thereby continuing the cascade process. This is often used to set limits on intergalactic magnetic fields (IGMFs). However, the picture may change if plasma instabilities, arising due to the interaction of the pairs with the intergalactic medium (IGM), cool down the electrons/positrons faster than inverse Compton scattering. As a consequence, the kinetic energy lost by the pairs to the IGM could cause a hardening in the observed gamma-ray spectrum at energies below ∼100 GeV. Here, we study several types and models of instabilities and assess their impact for interpreting observations of distant blazars. Our results suggest that plasma instabilities can describe the spectra of some blazars and mimic the effects of IGMFs, depending on parameters such as intrinsic spectrum of the object, the density and temperature of the IGM, and the luminosity of the beam. On the other hand, we find that for our fiducial set of parameters plasma instabilities do not have a major impact on the spectra of some of the blazars studied. Therefore, they may be used for constraining IGMFs.Accretion and outflow in V404 Cyg
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 488:1 (2019) 1356-1365