The connection between the fastest astrophysical jets and the spin axis of their black hole

Nature Astronomy Springer Science and Business Media LLC (2025)

Authors:

RP Fender, SE Motta

Abstract:

Abstract Astrophysical jets signpost the most extreme phenomena in the Universe. Despite a century of study, connections between the physics of black holes and the processes underpinning the formation and launch of these jets remain elusive. Here we present a statistically significant sample of transient jet speeds from stellar-mass black holes and neutron stars. The fastest jets are exclusively from black holes and propagate along a fixed axis across several ejection phases. This provides strong evidence that the most relativistic jets propagate along the spin axis of the black hole that launches them. However, we find no correlation between reported spin estimates and the jet speeds, indicating that some issues remain in connecting the theories of jet formation with spin measurements. By contrast, slower jets can be launched by both black holes and neutron stars and can change in direction or precess, indicating that they are launched from the accretion flow.

Getting More Out of Black Hole Superradiance: a Statistically Rigorous Approach to Ultralight Boson Constraints from Black Hole Spin Measurements

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1564

Authors:

Sebastian Hoof, David JE Marsh, Júlia Sisk-Reynés, James H Matthews, Christopher Reynolds

Abstract:

Abstract Black hole (BH) superradiance can provide strong constraints on the properties of ultralight bosons (ULBs). While most of the previous work has focused on the theoretical predictions, here we investigate the most suitable statistical framework to constrain ULB masses and self-interactions using BH spin measurements. We argue that a Bayesian approach based on a simple timescales analysis provides a clear statistical interpretation, deals with limitations regarding the reproducibility of existing BH analyses, incorporates the full information from BH data, and allows us to include additional nuisance parameters or to perform hierarchical modelling with BH populations in the future. We demonstrate the feasibility of our approach using mass and spin posterior samples for the X-ray binary BH M33 X-7 and, for the first time in this context, the supermassive BH IRAS 09149-6206. We explain the differences to existing ULB constraints in the literature and illustrate the effects of various assumptions about the superradiance process (equilibrium regime vs cloud collapse, higher occupation levels). As a result, our procedure yields the most statistically rigorous ULB constraints available in the literature, with important implications for the QCD axion and axion-like particles. We encourage all groups analysing BH data to publish likelihood functions or posterior samples as supplementary material to facilitate this type of analysis, and for theory developments to compress their findings to effective timescale modifications. https://github.com/sebhoof/bhsr

Relativistic precessing jets powered by an accreting neutron star

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) 544:1 (2025) L37-L44

Authors:

FJ Cowie, RP Fender, I Heywood, AK Hughes, K Savard, PA Woudt, F Carotenuto, AJ Cooper, J van den Eijnden, KVS Gasealahwe, SE Motta, P Saikia

Abstract:

ABSTRACT Precessing relativistic jets launched by compact objects are rarely directly measured, and present an invaluable opportunity to better understand many features of astrophysical jets. In this Letter we present MeerKAT radio observations of the neutron star X-ray binary system (NSXB) Circinus X-1 (Cir X-1). We observe a curved S-shaped morphology on $\sim 20\, \rm arcsec\, (\sim 1\:\text{pc})$ scales in the radio emission around Cir X-1. We identify flux density and position changes in the S-shaped emission on year time-scales, robustly showing its association with relativistic jets. The jets of Cir X-1 are still propagating with mildly relativistic velocities $\sim 1\:\text{pc}$ from the core, the first time such large scale jets have been seen from a NSXB. The position angle of the jet axis is observed to vary on year time-scales, over an extreme range of at least $110^\circ$. The morphology and position angle changes of the jet are best explained by a smoothly changing launch direction, verifying suggestions from previous literature, and indicating that precession of the jets is occurring. Steady precession of the jet is one interpretation of the data, and if occurring, we constrain the precession period and half-opening angle to $>10$ yr and $>33^\circ$, respectively, indicating precession in a different parameter space to similar known objects such as SS 433.

A diagnostic kit for optical emission lines shaped by accretion disc winds

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 543:1 (2025) 146-166

Authors:

Austen GW Wallis, Christian Knigge, James H Matthews, Knox S Long, Stuart A Sim

Abstract:

Abstract Blueshifted absorption is the classic spectroscopic signature of an accretion disc wind in X-ray binaries and cataclysmic variables (CVs). However, outflows can also create pure emission lines, especially at optical wavelengths. Therefore, developing other outflow diagnostics for these types of lines is worthwhile. With this in mind, we construct a systematic grid of 3645 synthetic wind-formed H α line profiles for CVs with the radiative transfer code sirocco. Our grid yields a variety of line shapes: symmetric, asymmetric, single- to quadruple-peaked, and even P-Cygni profiles. About 20percnt of these lines – our ‘Gold’ sample – have strengths and widths consistent with observations. We use this grid to test a recently proposed method for identifying wind-formed emission lines based on deviations in the wing profile shape: the ’excess equivalent width diagnostic diagram’. We find that our Gold sample can preferentially populate the suggested ‘wind regions’ of this diagram. However, the method is highly sensitive to the adopted definition of the line profile ‘wing’. Hence, we propose a refined definition based on the full-width at half maximum to improve the interpretability of the diagnostic diagram. Furthermore, we define an approximate scaling relation for the strengths of wind-formed CV emission lines in terms of the outflow parameters. This relation provides a fast way to assess whether – and what kind of – outflow can produce an observed emission line. All our wind-based models are open-source and we provide an easy-to-use web-based tool to browse our full set of H α spectral profiles.

Variability of X-ray polarization of Cyg X-1

Astronomy & Astrophysics EDP Sciences 701 (2025) a115

Authors:

Vadim Kravtsov, Anastasiia Bocharova, Alexandra Veledina, Juri Poutanen, Andrew K Hughes, Michal Dovčiak, Elise Egron, Fabio Muleri, Jakub Podgorny, Jiři Svoboda, Sofia V Forsblom, Andrei V Berdyugin, Dmitry Blinov, Joe S Bright, Francesco Carotenuto, David A Green, Adam Ingram, Ioannis Liodakis, Nikos Mandarakas, Anagha P Nitindala, Lauren Rhodes, Sergei A Trushkin, Sergey S Tsygankov, Maïmouna Brigitte, Alessandro Di Marco, Noemi Iacolina, Henric Krawczynski, Fabio La Monaca, Vladislav Loktev, Guglielmo Mastroserio, Pierre-Olivier Petrucci, Maura Pilia, Francesco Tombesi, Andrzej A Zdziarski

Abstract:

We present the results of a three-year X-ray, optical, and radio polarimetric monitoring campaign of the prototypical black hole X-ray binary Cyg X-1, conducted from 2022 to 2024. The X-ray polarization of Cyg X-1 was measured 13 times with the Imaging X-ray Polarimetry Explorer (IXPE), covering both hard and soft spectral states. The X-ray polarization degree (PD) in the hard state was found to be ≈4.0%, roughly twice as high as in the soft state, where it was around 2.2%. In both states, a statistically significant increase in PD with the energy was found. Moreover, a linear relation between PD and spectral hardness suggests a gradual and continuous evolution of the polarization properties, rather than an abrupt change of polarization production mechanism between states. The polarization angle (PA) was independent of the spectral state and showed no trend with the photon energy. The X-ray PA is well aligned with the orientation of the radio jet, as well as the optical and radio PAs. We find significant orbital changes of PA in the hard state, which we attribute to scattering of X-ray emission at the intrabinary structure. No significant superorbital variability in PD or PA was found at the period P so = 294 d. We detect, for the first time in this source, polarization of the radio emission, with the PA aligned with the jet, and a strong increase of the PD at a transition to the soft state. We also find no correlation between the X-ray and optical polarization; if any, there is a long-term anti-correlation between the X-ray PD and the radio PD.