CRPropa - A Toolbox for Cosmic Ray Simulations

26TH EXTENDED EUROPEAN COSMIC RAY SYMPOSIUM IOP Publishing 1181:1 (2019) 012034-012034

Authors:

R Alves Batista, J Becker Tjus, A Dundovic, M Erdmann, C Heiter, K-H Kampert, D Kuempel, L Merten, G Mueller, G Sigl, A Von Vliet, D Walz, T Winchen, M Wirtz

Abstract:

© Published under licence by IOP Publishing Ltd. The astrophysical interpretation of recent experimental observations of cosmic rays relies increasingly on Monte Carlo simulations of cosmic ray propagation and acceleration. Depending on the energy range of interest, several different propagation effects inside the Milky Way as well as in extragalactic space have to be taken into account when interpreting the data. With the CRPropa framework we aim to provide a toolbox for according simulations. In recent versions of CRPropa, the ballistic single particle propagation mode aiming primarily at extragalactic cosmic rays has been complemented by a solver for the differential transport equation to address propagation of galactic cosmic rays. Additionally, modules have been developed to address cosmic ray acceleration and many improvements have been added for simulations of electromagnetic secondaries. In this contribution we will give an overview of the CRPropa simulation framework with a focus on the latest improvements and highlight selected features by example applications.

On the measurement of the helicity of intergalactic magnetic fields using ultra-high-energy cosmic rays

Journal of Cosmology and Astroparticle Physics IOP Publishing 2019:3 (2019) 11

Authors:

Rafael Alves Batista, Andrey Saveliev

Abstract:

The origin of the first magnetic fields in the Universe is a standing problem in cosmology. Intergalactic magnetic fields (IGMFs) may be an untapped window to the primeval Universe, providing further constrains on magnetogenesis. We demonstrate the feasibility of using ultra-high-energy cosmic rays (UHECRs) to constrain the helicity of IGMFs by performing simulations of cosmic-ray propagation in simple magnetic field configurations. We show that the first harmonic moments of the arrival distribution of UHECRs may be used to measure the absolute value of the helicity and its sign.

Propagation of cosmic rays and their secondaries in the intracluster medium

Proceedings of the International Astronomical Union Cambridge University Press (CUP) 15:S359 (2019) 178-179

Authors:

Saqib Hussain, Rafael Alves Batista, Elisabete Maria de Gouveia Dal Pino, Klaus Dolag

Science with the Cherenkov Telescope Array

World Scientific (2019)

Authors:

BS Acharya, I Agudo, Rafael Batista, Thomas Armstrong, Garret Cotter, Andrea Franco, Paul Morris, Subir Sarkar, Jason J Watson

Abstract:

The Cherenkov Telescope Array, CTA, will be the major global observatory for very high energy gamma-ray astronomy over the next decade and beyond. The scientific potential of CTA is extremely broad: from understanding the role of relativistic cosmic particles to the search for dark matter. CTA is an explorer of the extreme universe, probing environments from the immediate neighbourhood of black holes to cosmic voids on the largest scales. Covering a huge range in photon energy from 20 GeV to 300 TeV, CTA will improve on all aspects of performance with respect to current instruments. The observatory will operate arrays on sites in both hemispheres to provide full sky coverage and will hence maximize the potential for the rarest phenomena such as very nearby supernovae, gamma-ray bursts or gravitational wave transients. With 99 telescopes on the southern site and 19 telescopes on the northern site, flexible operation will be possible, with sub-arrays available for specific tasks. CTA will have important synergies with many of the new generation of major astronomical and astroparticle observatories. Multi-wavelength and multi-messenger approaches combining CTA data with those from other instruments will lead to a deeper understanding of the broad-band non-thermal properties of target sources. The CTA Observatory will be operated as an open, proposal-driven observatory, with all data available on a public archive after a pre-defined proprietary period. Scientists from institutions worldwide have combined together to form the CTA Consortium. This Consortium has prepared a proposal for a Core Programme of highly motivated observations. The programme, encompassing approximately 40% of the available observing time over the first ten years of CTA operation, is made up of individual Key Science Projects (KSPs), which are presented in this document.

The First Tidal Disruption Flare in ZTF: From Photometric Selection to Multi-wavelength Characterization

The Astrophysical Journal American Astronomical Society 872:2 (2019) 198

Authors:

Sjoert van Velzen, Suvi Gezari, S Bradley Cenko, Erin Kara, James CA Miller-Jones, Tiara Hung, Joe Bright, Nathaniel Roth, Nadejda Blagorodnova, Daniela Huppenkothen, Lin Yan, Eran Ofek, Jesper Sollerman, Sara Frederick, Charlotte Ward, Matthew J Graham, Rob Fender, Mansi M Kasliwal, Chris Canella, Robert Stein, Matteo Giomi, Valery Brinnel, Jakob van Santen, Jakob Nordin, Eric C Bellm, Richard Dekany, Christoffer Fremling, V Zach Golkhou, Thomas Kupfer, Shrinivas R Kulkarni, Russ R Laher, Ashish Mahabal, Frank J Masci, Adam A Miller, James D Neill, Reed Riddle, Mickael Rigault, Ben Rusholme, Maayane T Soumagnac, Yutaro Tachibana