Infrared spectroscopy of nearby radio active elliptical galaxies
The rapid atmospheric monitoring system of the Pierre Auger Observatory
Abstract:
The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 1017 eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or "rapid") monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction.
The coordinated radio and infrared survey for High-mass star formation (The CORNISH Survey). I. Survey design
Abstract:
We describe the motivation, design, and implementation of the CORNISH survey, an arcsecondresolution radio continuum survey of the inner galactic plane at 5 GHz using the Very Large Array (VLA). It is a blind survey coordinated with the northern Spitzer GLIMPSE I region covering 10° < l < 65° and |b| < 1° at similar resolution. We discuss in detail the strategy that we employed to control the shape of the synthesised beam across this survey, which covers a wide range of fairly low declinations. Two snapshots separated by 4h kept the beam elongation to less that 1.5 over 75% of the survey area and less than 2 over 98% of the survey. The prime scientific motivation is to provide an unbiased survey for ultra-compact H II regions to study this key phase in massive star formation. A sensitivity around 2 mJy will allow the automatic distinction between radio-loud and radio-quiet mid- IR sources found in the Spitzer surveys. This survey has many legacy applications beyond star formation, including evolved stars, active stars and binaries, and extragalactic sources. The CORNISH survey for compact ionized sources complements other Galactic plane surveys that target diffuse and nonthermal sources, as well as atomic and molecular phases to build up a complete picture of the interstellar medium in the Galaxy. © 2012. The Astronomical Society of the Pacific.Measurement of the cosmic ray energy spectrum using hybrid events of the Pierre Auger Observatory
Abstract:
The energy spectrum of ultra-high energy cosmic rays above 1018 eV is measured using the hybrid events collected by the Pierre Auger Observatory between November 2005 and September 2010. The large exposure of the Observatory allows the measurement of the main features of the energy spectrum with high statistics. Full Monte Carlo simulations of the extensive air showers (based on the CORSIKA code) and of the hybrid detector response are adopted here as an independent cross check of the standard analysis (Phys. Lett. B 685, 239 (2010)). The dependence on mass composition and other systematic uncertainties are discussed in detail and, in the full Monte Carlo approach, a region of confidence for flux measurements is defined when all the uncertainties are taken into account. An update is also reported of the energy spectrum obtained by combining the hybrid spectrum and that measured using the surface detector array.